Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning
This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. O...
Gespeichert in:
Veröffentlicht in: | Color research and application 2025-01 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Color research and application |
container_volume | |
creator | Zhan, Hongwu Zou, Yifei Zhang, Yinwei Gong, Weiwei Xu, Fang |
description | This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry. |
doi_str_mv | 10.1002/col.22971 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_col_22971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_col_22971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-af67e3133c3906bea414de3ea5b4e87692a433fc1b9fd32445c8427c9063525a3</originalsourceid><addsrcrecordid>eNotkL1OwzAURi0EEqEw8AZeGVJsXztORrBSqEjF0DIwRY5zgwJJXNkREm9P-Jk-6dPRGQ4h15ytOWPi1vlhLUSh-QlJuBIszUDnpyRhkPFUANfn5CLGd8aYglwn5GD84APdH61Davz0iSH2fqI73-JAN8GP1Oxen-jsqdmWlW3ovY3Y0gXZz9Z99NMbLaeIYzMgrdCGaXkuyVlnh4hX_7siL5vyYB7T6vlha-6q1HFezKntMo3AARwULGvQSi5bBLSqkZjrrBBWAnSON0XXgpBSuVwK7RYYlFAWVuTmz-uCjzFgVx9DP9rwVXNW_-Solxz1bw74BlzhUSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhan, Hongwu ; Zou, Yifei ; Zhang, Yinwei ; Gong, Weiwei ; Xu, Fang</creator><creatorcontrib>Zhan, Hongwu ; Zou, Yifei ; Zhang, Yinwei ; Gong, Weiwei ; Xu, Fang</creatorcontrib><description>This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry.</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.22971</identifier><language>eng</language><ispartof>Color research and application, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-af67e3133c3906bea414de3ea5b4e87692a433fc1b9fd32445c8427c9063525a3</cites><orcidid>0009-0005-8859-3270 ; 0009-0001-9961-8577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhan, Hongwu</creatorcontrib><creatorcontrib>Zou, Yifei</creatorcontrib><creatorcontrib>Zhang, Yinwei</creatorcontrib><creatorcontrib>Gong, Weiwei</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><title>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</title><title>Color research and application</title><description>This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry.</description><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAURi0EEqEw8AZeGVJsXztORrBSqEjF0DIwRY5zgwJJXNkREm9P-Jk-6dPRGQ4h15ytOWPi1vlhLUSh-QlJuBIszUDnpyRhkPFUANfn5CLGd8aYglwn5GD84APdH61Davz0iSH2fqI73-JAN8GP1Oxen-jsqdmWlW3ovY3Y0gXZz9Z99NMbLaeIYzMgrdCGaXkuyVlnh4hX_7siL5vyYB7T6vlha-6q1HFezKntMo3AARwULGvQSi5bBLSqkZjrrBBWAnSON0XXgpBSuVwK7RYYlFAWVuTmz-uCjzFgVx9DP9rwVXNW_-Solxz1bw74BlzhUSE</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Zhan, Hongwu</creator><creator>Zou, Yifei</creator><creator>Zhang, Yinwei</creator><creator>Gong, Weiwei</creator><creator>Xu, Fang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-8859-3270</orcidid><orcidid>https://orcid.org/0009-0001-9961-8577</orcidid></search><sort><creationdate>20250110</creationdate><title>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</title><author>Zhan, Hongwu ; Zou, Yifei ; Zhang, Yinwei ; Gong, Weiwei ; Xu, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-af67e3133c3906bea414de3ea5b4e87692a433fc1b9fd32445c8427c9063525a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Hongwu</creatorcontrib><creatorcontrib>Zou, Yifei</creatorcontrib><creatorcontrib>Zhang, Yinwei</creatorcontrib><creatorcontrib>Gong, Weiwei</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><collection>CrossRef</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Hongwu</au><au>Zou, Yifei</au><au>Zhang, Yinwei</au><au>Gong, Weiwei</au><au>Xu, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</atitle><jtitle>Color research and application</jtitle><date>2025-01-10</date><risdate>2025</risdate><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry.</abstract><doi>10.1002/col.22971</doi><orcidid>https://orcid.org/0009-0005-8859-3270</orcidid><orcidid>https://orcid.org/0009-0001-9961-8577</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-2317 |
ispartof | Color research and application, 2025-01 |
issn | 0361-2317 1520-6378 |
language | eng |
recordid | cdi_crossref_primary_10_1002_col_22971 |
source | Wiley Online Library Journals Frontfile Complete |
title | Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20Space%20Conversion%20Model%20From%20CMYK%20to%20CIELab%20Based%20on%20Stacking%20Ensemble%20Learning&rft.jtitle=Color%20research%20and%20application&rft.au=Zhan,%20Hongwu&rft.date=2025-01-10&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.22971&rft_dat=%3Ccrossref%3E10_1002_col_22971%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |