Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning

This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Color research and application 2025-01
Hauptverfasser: Zhan, Hongwu, Zou, Yifei, Zhang, Yinwei, Gong, Weiwei, Xu, Fang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Color research and application
container_volume
creator Zhan, Hongwu
Zou, Yifei
Zhang, Yinwei
Gong, Weiwei
Xu, Fang
description This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry.
doi_str_mv 10.1002/col.22971
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_col_22971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_col_22971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-af67e3133c3906bea414de3ea5b4e87692a433fc1b9fd32445c8427c9063525a3</originalsourceid><addsrcrecordid>eNotkL1OwzAURi0EEqEw8AZeGVJsXztORrBSqEjF0DIwRY5zgwJJXNkREm9P-Jk-6dPRGQ4h15ytOWPi1vlhLUSh-QlJuBIszUDnpyRhkPFUANfn5CLGd8aYglwn5GD84APdH61Davz0iSH2fqI73-JAN8GP1Oxen-jsqdmWlW3ovY3Y0gXZz9Z99NMbLaeIYzMgrdCGaXkuyVlnh4hX_7siL5vyYB7T6vlha-6q1HFezKntMo3AARwULGvQSi5bBLSqkZjrrBBWAnSON0XXgpBSuVwK7RYYlFAWVuTmz-uCjzFgVx9DP9rwVXNW_-Solxz1bw74BlzhUSE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zhan, Hongwu ; Zou, Yifei ; Zhang, Yinwei ; Gong, Weiwei ; Xu, Fang</creator><creatorcontrib>Zhan, Hongwu ; Zou, Yifei ; Zhang, Yinwei ; Gong, Weiwei ; Xu, Fang</creatorcontrib><description>This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry.</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.22971</identifier><language>eng</language><ispartof>Color research and application, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-af67e3133c3906bea414de3ea5b4e87692a433fc1b9fd32445c8427c9063525a3</cites><orcidid>0009-0005-8859-3270 ; 0009-0001-9961-8577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Zhan, Hongwu</creatorcontrib><creatorcontrib>Zou, Yifei</creatorcontrib><creatorcontrib>Zhang, Yinwei</creatorcontrib><creatorcontrib>Gong, Weiwei</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><title>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</title><title>Color research and application</title><description>This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry.</description><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkL1OwzAURi0EEqEw8AZeGVJsXztORrBSqEjF0DIwRY5zgwJJXNkREm9P-Jk-6dPRGQ4h15ytOWPi1vlhLUSh-QlJuBIszUDnpyRhkPFUANfn5CLGd8aYglwn5GD84APdH61Davz0iSH2fqI73-JAN8GP1Oxen-jsqdmWlW3ovY3Y0gXZz9Z99NMbLaeIYzMgrdCGaXkuyVlnh4hX_7siL5vyYB7T6vlha-6q1HFezKntMo3AARwULGvQSi5bBLSqkZjrrBBWAnSON0XXgpBSuVwK7RYYlFAWVuTmz-uCjzFgVx9DP9rwVXNW_-Solxz1bw74BlzhUSE</recordid><startdate>20250110</startdate><enddate>20250110</enddate><creator>Zhan, Hongwu</creator><creator>Zou, Yifei</creator><creator>Zhang, Yinwei</creator><creator>Gong, Weiwei</creator><creator>Xu, Fang</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0005-8859-3270</orcidid><orcidid>https://orcid.org/0009-0001-9961-8577</orcidid></search><sort><creationdate>20250110</creationdate><title>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</title><author>Zhan, Hongwu ; Zou, Yifei ; Zhang, Yinwei ; Gong, Weiwei ; Xu, Fang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-af67e3133c3906bea414de3ea5b4e87692a433fc1b9fd32445c8427c9063525a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhan, Hongwu</creatorcontrib><creatorcontrib>Zou, Yifei</creatorcontrib><creatorcontrib>Zhang, Yinwei</creatorcontrib><creatorcontrib>Gong, Weiwei</creatorcontrib><creatorcontrib>Xu, Fang</creatorcontrib><collection>CrossRef</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhan, Hongwu</au><au>Zou, Yifei</au><au>Zhang, Yinwei</au><au>Gong, Weiwei</au><au>Xu, Fang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning</atitle><jtitle>Color research and application</jtitle><date>2025-01-10</date><risdate>2025</risdate><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>This paper develops a method based on a stacking ensemble learning model to achieve more accurate conversion from CMYK colors to LAB colors. The model employs tetrahedral interpolation, radial basis function (RBF) interpolation, and KAN as base learners, with linear regression as the meta‐learner. Our findings show that the stacking‐based model outperforms single models in accuracy for color conversion. In the empirical study, color blocks were printed and the collected data was measured to train and validate the stacking ensemble learning model. The results show that the stacking‐based model achieves superior accuracy in color space conversion tasks. This research has substantial practical implications for enhancing color management technology in the printing industry.</abstract><doi>10.1002/col.22971</doi><orcidid>https://orcid.org/0009-0005-8859-3270</orcidid><orcidid>https://orcid.org/0009-0001-9961-8577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-2317
ispartof Color research and application, 2025-01
issn 0361-2317
1520-6378
language eng
recordid cdi_crossref_primary_10_1002_col_22971
source Wiley Online Library Journals Frontfile Complete
title Color Space Conversion Model From CMYK to CIELab Based on Stacking Ensemble Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A30%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Color%20Space%20Conversion%20Model%20From%20CMYK%20to%20CIELab%20Based%20on%20Stacking%20Ensemble%20Learning&rft.jtitle=Color%20research%20and%20application&rft.au=Zhan,%20Hongwu&rft.date=2025-01-10&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.22971&rft_dat=%3Ccrossref%3E10_1002_col_22971%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true