Cation Engineering by Three‐Dimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells

Low‐dimensional additive engineering could effectively reduce the high‐density trap defect density and improve the stability of perovskite solar cells (PSCs). To avoid the limiting effect of charge carrier transfer by incorporating the large‐size long alkyl chain organic cations, we developed a new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemNanoMat : chemistry of nanomaterials for energy, biology and more biology and more, 2022-12, Vol.8 (12), p.n/a
Hauptverfasser: Shang, Xueni, Zhang, Boxue, Gao, Deyu, Li, Mengjia, Wang, Chenglin, Meng, Fanbin, Chen, Cong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title ChemNanoMat : chemistry of nanomaterials for energy, biology and more
container_volume 8
creator Shang, Xueni
Zhang, Boxue
Gao, Deyu
Li, Mengjia
Wang, Chenglin
Meng, Fanbin
Chen, Cong
description Low‐dimensional additive engineering could effectively reduce the high‐density trap defect density and improve the stability of perovskite solar cells (PSCs). To avoid the limiting effect of charge carrier transfer by incorporating the large‐size long alkyl chain organic cations, we developed a new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+), to passivate the defects and enhance the device stability. DABCO2+ with fine crystal structure and thermal stability could result in substantially fewer structural defects, enhance carrier lifetime, and inhibit nonradiative recombination loss. Structural analysis of CsFAPbI3 perovskite doped with different concentrations of the three‐dimensional organic spacer cations shows a clear correlation between the structure and the resultant perovskite films. Consequently, DABCO2+ modified CsFAPbI3‐based PSCs could achieve an optimized PCE of 23.02% with high stability exceeding 1500 h. This work opens a new approach to fabricating PSCs with enhanced stability for future commercial applications. A new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+) was developed to passivate defects and enhance the device stability.
doi_str_mv 10.1002/cnma.202200390
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cnma_202200390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CNMA202200390</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2890-f73e8d9a220d6804e83453fd14b89cac63892ce2def33228fafa0a8ca9740be73</originalsourceid><addsrcrecordid>eNqFkM1OAjEUhRujiQTZuu4LgHfaAdolGfAnQSERE3eTS-cWq0OHtARD3PgIPqNP4pAx6s7VPYvzneR-jJ0n0EsAxIXxa-wJEAJAajhiLZFo3R1o8Xj8J5-yTozPAJCotJ-AbLG3DLeu8nziV84TBedXfLnni6dA9Pn-MXZr8rEuYMlnYYXeGX6_QUOBN2Dktgp8Yi2ZrdsRH9Mh8TnG6HbNtPN8TqHaxRe3JX5flVjDVJbxjJ1YLCN1vm-bPVxOFtl1dzq7uslG064RSkPXDiWpQmP9WzFQkJKSaV_aIkmXShs0A6m0MCQKslIKoSxaBFQG9TCFJQ1lm_WaXROqGAPZfBPcGsM-TyA_2MsP9vIfezWgG-DVlbT_p51nd7ejX_YLTvp2-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cation Engineering by Three‐Dimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Shang, Xueni ; Zhang, Boxue ; Gao, Deyu ; Li, Mengjia ; Wang, Chenglin ; Meng, Fanbin ; Chen, Cong</creator><creatorcontrib>Shang, Xueni ; Zhang, Boxue ; Gao, Deyu ; Li, Mengjia ; Wang, Chenglin ; Meng, Fanbin ; Chen, Cong</creatorcontrib><description>Low‐dimensional additive engineering could effectively reduce the high‐density trap defect density and improve the stability of perovskite solar cells (PSCs). To avoid the limiting effect of charge carrier transfer by incorporating the large‐size long alkyl chain organic cations, we developed a new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+), to passivate the defects and enhance the device stability. DABCO2+ with fine crystal structure and thermal stability could result in substantially fewer structural defects, enhance carrier lifetime, and inhibit nonradiative recombination loss. Structural analysis of CsFAPbI3 perovskite doped with different concentrations of the three‐dimensional organic spacer cations shows a clear correlation between the structure and the resultant perovskite films. Consequently, DABCO2+ modified CsFAPbI3‐based PSCs could achieve an optimized PCE of 23.02% with high stability exceeding 1500 h. This work opens a new approach to fabricating PSCs with enhanced stability for future commercial applications. A new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+) was developed to passivate defects and enhance the device stability.</description><identifier>ISSN: 2199-692X</identifier><identifier>EISSN: 2199-692X</identifier><identifier>DOI: 10.1002/cnma.202200390</identifier><language>eng</language><subject>DABCO2 ; Defect passivation ; Organic spacer cations ; Perovskite solar cells ; Three-dimensional</subject><ispartof>ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2022-12, Vol.8 (12), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2890-f73e8d9a220d6804e83453fd14b89cac63892ce2def33228fafa0a8ca9740be73</citedby><cites>FETCH-LOGICAL-c2890-f73e8d9a220d6804e83453fd14b89cac63892ce2def33228fafa0a8ca9740be73</cites><orcidid>0000-0003-1000-6791</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnma.202200390$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnma.202200390$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Shang, Xueni</creatorcontrib><creatorcontrib>Zhang, Boxue</creatorcontrib><creatorcontrib>Gao, Deyu</creatorcontrib><creatorcontrib>Li, Mengjia</creatorcontrib><creatorcontrib>Wang, Chenglin</creatorcontrib><creatorcontrib>Meng, Fanbin</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><title>Cation Engineering by Three‐Dimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells</title><title>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</title><description>Low‐dimensional additive engineering could effectively reduce the high‐density trap defect density and improve the stability of perovskite solar cells (PSCs). To avoid the limiting effect of charge carrier transfer by incorporating the large‐size long alkyl chain organic cations, we developed a new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+), to passivate the defects and enhance the device stability. DABCO2+ with fine crystal structure and thermal stability could result in substantially fewer structural defects, enhance carrier lifetime, and inhibit nonradiative recombination loss. Structural analysis of CsFAPbI3 perovskite doped with different concentrations of the three‐dimensional organic spacer cations shows a clear correlation between the structure and the resultant perovskite films. Consequently, DABCO2+ modified CsFAPbI3‐based PSCs could achieve an optimized PCE of 23.02% with high stability exceeding 1500 h. This work opens a new approach to fabricating PSCs with enhanced stability for future commercial applications. A new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+) was developed to passivate defects and enhance the device stability.</description><subject>DABCO2</subject><subject>Defect passivation</subject><subject>Organic spacer cations</subject><subject>Perovskite solar cells</subject><subject>Three-dimensional</subject><issn>2199-692X</issn><issn>2199-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OAjEUhRujiQTZuu4LgHfaAdolGfAnQSERE3eTS-cWq0OHtARD3PgIPqNP4pAx6s7VPYvzneR-jJ0n0EsAxIXxa-wJEAJAajhiLZFo3R1o8Xj8J5-yTozPAJCotJ-AbLG3DLeu8nziV84TBedXfLnni6dA9Pn-MXZr8rEuYMlnYYXeGX6_QUOBN2Dktgp8Yi2ZrdsRH9Mh8TnG6HbNtPN8TqHaxRe3JX5flVjDVJbxjJ1YLCN1vm-bPVxOFtl1dzq7uslG064RSkPXDiWpQmP9WzFQkJKSaV_aIkmXShs0A6m0MCQKslIKoSxaBFQG9TCFJQ1lm_WaXROqGAPZfBPcGsM-TyA_2MsP9vIfezWgG-DVlbT_p51nd7ejX_YLTvp2-A</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Shang, Xueni</creator><creator>Zhang, Boxue</creator><creator>Gao, Deyu</creator><creator>Li, Mengjia</creator><creator>Wang, Chenglin</creator><creator>Meng, Fanbin</creator><creator>Chen, Cong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1000-6791</orcidid></search><sort><creationdate>202212</creationdate><title>Cation Engineering by Three‐Dimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells</title><author>Shang, Xueni ; Zhang, Boxue ; Gao, Deyu ; Li, Mengjia ; Wang, Chenglin ; Meng, Fanbin ; Chen, Cong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2890-f73e8d9a220d6804e83453fd14b89cac63892ce2def33228fafa0a8ca9740be73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>DABCO2</topic><topic>Defect passivation</topic><topic>Organic spacer cations</topic><topic>Perovskite solar cells</topic><topic>Three-dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shang, Xueni</creatorcontrib><creatorcontrib>Zhang, Boxue</creatorcontrib><creatorcontrib>Gao, Deyu</creatorcontrib><creatorcontrib>Li, Mengjia</creatorcontrib><creatorcontrib>Wang, Chenglin</creatorcontrib><creatorcontrib>Meng, Fanbin</creatorcontrib><creatorcontrib>Chen, Cong</creatorcontrib><collection>CrossRef</collection><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shang, Xueni</au><au>Zhang, Boxue</au><au>Gao, Deyu</au><au>Li, Mengjia</au><au>Wang, Chenglin</au><au>Meng, Fanbin</au><au>Chen, Cong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cation Engineering by Three‐Dimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells</atitle><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle><date>2022-12</date><risdate>2022</risdate><volume>8</volume><issue>12</issue><epage>n/a</epage><issn>2199-692X</issn><eissn>2199-692X</eissn><abstract>Low‐dimensional additive engineering could effectively reduce the high‐density trap defect density and improve the stability of perovskite solar cells (PSCs). To avoid the limiting effect of charge carrier transfer by incorporating the large‐size long alkyl chain organic cations, we developed a new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+), to passivate the defects and enhance the device stability. DABCO2+ with fine crystal structure and thermal stability could result in substantially fewer structural defects, enhance carrier lifetime, and inhibit nonradiative recombination loss. Structural analysis of CsFAPbI3 perovskite doped with different concentrations of the three‐dimensional organic spacer cations shows a clear correlation between the structure and the resultant perovskite films. Consequently, DABCO2+ modified CsFAPbI3‐based PSCs could achieve an optimized PCE of 23.02% with high stability exceeding 1500 h. This work opens a new approach to fabricating PSCs with enhanced stability for future commercial applications. A new three‐dimensional organic spacer cation, 1,4‐diazabicyclo [2,2,2] octane‐1,4‐diium (DABCO2+) was developed to passivate defects and enhance the device stability.</abstract><doi>10.1002/cnma.202200390</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1000-6791</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2199-692X
ispartof ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2022-12, Vol.8 (12), p.n/a
issn 2199-692X
2199-692X
language eng
recordid cdi_crossref_primary_10_1002_cnma_202200390
source Wiley Online Library - AutoHoldings Journals
subjects DABCO2
Defect passivation
Organic spacer cations
Perovskite solar cells
Three-dimensional
title Cation Engineering by Three‐Dimensional Organic Spacer Cations for Effective Defect Passivation in Perovskite Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A06%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cation%20Engineering%20by%20Three%E2%80%90Dimensional%20Organic%20Spacer%20Cations%20for%20Effective%20Defect%20Passivation%20in%20Perovskite%20Solar%20Cells&rft.jtitle=ChemNanoMat%20:%20chemistry%20of%20nanomaterials%20for%20energy,%20biology%20and%20more&rft.au=Shang,%20Xueni&rft.date=2022-12&rft.volume=8&rft.issue=12&rft.epage=n/a&rft.issn=2199-692X&rft.eissn=2199-692X&rft_id=info:doi/10.1002/cnma.202200390&rft_dat=%3Cwiley_cross%3ECNMA202200390%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true