Enhancing High Humidity Stability of Quasi‐2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering

Perovskite materials show excellent photovoltaic performance along with simple processing and low‐energy requirements. Despite their high power conversion efficiency (PCE), instability in the presence of moisture is still a major challenge. An effective method to enhance perovskite stability is by r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemNanoMat : chemistry of nanomaterials for energy, biology and more biology and more, 2019-10, Vol.5 (10), p.1280-1288
Hauptverfasser: Naikaew, Atittaya, Kumnorkaew, Pisist, Supasai, Thidarat, Suwanna, Sujin, Hunkao, Rutchapon, Srikhirin, Toemsak, Kanjanaboos, Pongsakorn
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1288
container_issue 10
container_start_page 1280
container_title ChemNanoMat : chemistry of nanomaterials for energy, biology and more
container_volume 5
creator Naikaew, Atittaya
Kumnorkaew, Pisist
Supasai, Thidarat
Suwanna, Sujin
Hunkao, Rutchapon
Srikhirin, Toemsak
Kanjanaboos, Pongsakorn
description Perovskite materials show excellent photovoltaic performance along with simple processing and low‐energy requirements. Despite their high power conversion efficiency (PCE), instability in the presence of moisture is still a major challenge. An effective method to enhance perovskite stability is by reducing dimensionality through incorporation of long organic cations into the perovskite crystal, which improves charge‐carrier extraction efficiency of the perovskites compared to conventional 3D perovskites. Quasi‐2D perovskites or 2D/3D perovskites strike a good balance between PCE and stability, having much improved stability compared to 3D structures while retaining excellent optoelectronic properties. Yielding better thermal stability and broader absorption into the near‐infrared, formamidinium iodide (FAI) doping has positive influences yet tends to cause poor surface morphology. Here, we introduce highly stable MA/FA‐based quasi‐2D perovskite fabricated by mixed cation doping (MCD), which is repeated deposition of MA and FA cations onto a quasi‐2D perovskite layer. MCD enables better morphology and surface passivation, leading to fewer defects. MA/FA‐based quasi‐2D perovskite with quasi‐cubic structure has high humidity resistivity, remaining intact after 90 days under 60% relative humidity without encapsulation. The underlying mechanism is further explained by binding and formation energies of cation mixture in solution and perovskite structure through computational analysis. Mixed cation doping (MCD) is a sequential solution processing that opens a new route for high quality and simple perovskite fabrication, providing gradual crystallization and good surface passivation, which leads to larger crystallite size and lower electronic defects. MA/FA‐based quasi‐2D perovskite with MCD treatment has better morphology along with high moisture stability beyond 90 days under 60% RH without encapsulation.
doi_str_mv 10.1002/cnma.201900189
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cnma_201900189</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CNMA201900189</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2899-1b0da6ffe4e8ad05fd4ce64ec6327bb908f4f2c6ce3bd0c44fd8162d0509e2293</originalsourceid><addsrcrecordid>eNqFkE1OwzAUhC0EElXplrUv0GI7aYiXVdpSpJYfUSR2kWM_N4bEruK0kB1H4IychERFwI7VGz3NNxoNQueUjCgh7ELaUowYoZwQGvMj1GOU82HE2dPxH32KBt4_k84TjikJeqiZ2VxYaewGL8wmx4tdaZSpG_xQi8wUnXIa3--EN5_vH2yK76Bye_9iasDr3Fg8N0XpcZ1XbtfiK_MGCieiNs7iqdt2ucIq_OCKPdgaz-zGWICq_Z-hEy0KD4Pv20eP89k6WQyXt1fXyWQ5lCxua9OMKBFpDSHEQpGxVqGEKAQZBewyyziJdaiZjCQEmSIyDLWKacRaJ-HAGA_6aHTIlZXzvgKdbitTiqpJKUm77dJuu_RnuxbgB-DVFND8406Tm9Xkl_0CJi12eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Enhancing High Humidity Stability of Quasi‐2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering</title><source>Access via Wiley Online Library</source><creator>Naikaew, Atittaya ; Kumnorkaew, Pisist ; Supasai, Thidarat ; Suwanna, Sujin ; Hunkao, Rutchapon ; Srikhirin, Toemsak ; Kanjanaboos, Pongsakorn</creator><creatorcontrib>Naikaew, Atittaya ; Kumnorkaew, Pisist ; Supasai, Thidarat ; Suwanna, Sujin ; Hunkao, Rutchapon ; Srikhirin, Toemsak ; Kanjanaboos, Pongsakorn</creatorcontrib><description>Perovskite materials show excellent photovoltaic performance along with simple processing and low‐energy requirements. Despite their high power conversion efficiency (PCE), instability in the presence of moisture is still a major challenge. An effective method to enhance perovskite stability is by reducing dimensionality through incorporation of long organic cations into the perovskite crystal, which improves charge‐carrier extraction efficiency of the perovskites compared to conventional 3D perovskites. Quasi‐2D perovskites or 2D/3D perovskites strike a good balance between PCE and stability, having much improved stability compared to 3D structures while retaining excellent optoelectronic properties. Yielding better thermal stability and broader absorption into the near‐infrared, formamidinium iodide (FAI) doping has positive influences yet tends to cause poor surface morphology. Here, we introduce highly stable MA/FA‐based quasi‐2D perovskite fabricated by mixed cation doping (MCD), which is repeated deposition of MA and FA cations onto a quasi‐2D perovskite layer. MCD enables better morphology and surface passivation, leading to fewer defects. MA/FA‐based quasi‐2D perovskite with quasi‐cubic structure has high humidity resistivity, remaining intact after 90 days under 60% relative humidity without encapsulation. The underlying mechanism is further explained by binding and formation energies of cation mixture in solution and perovskite structure through computational analysis. Mixed cation doping (MCD) is a sequential solution processing that opens a new route for high quality and simple perovskite fabrication, providing gradual crystallization and good surface passivation, which leads to larger crystallite size and lower electronic defects. MA/FA‐based quasi‐2D perovskite with MCD treatment has better morphology along with high moisture stability beyond 90 days under 60% RH without encapsulation.</description><identifier>ISSN: 2199-692X</identifier><identifier>EISSN: 2199-692X</identifier><identifier>DOI: 10.1002/cnma.201900189</identifier><language>eng</language><subject>2D/3D perovskite ; Mixed Cation Doping ; Moisture Stability ; Quasi-2D Perovskites</subject><ispartof>ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2019-10, Vol.5 (10), p.1280-1288</ispartof><rights>2019 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2899-1b0da6ffe4e8ad05fd4ce64ec6327bb908f4f2c6ce3bd0c44fd8162d0509e2293</citedby><cites>FETCH-LOGICAL-c2899-1b0da6ffe4e8ad05fd4ce64ec6327bb908f4f2c6ce3bd0c44fd8162d0509e2293</cites><orcidid>0000-0002-4854-1733</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcnma.201900189$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcnma.201900189$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Naikaew, Atittaya</creatorcontrib><creatorcontrib>Kumnorkaew, Pisist</creatorcontrib><creatorcontrib>Supasai, Thidarat</creatorcontrib><creatorcontrib>Suwanna, Sujin</creatorcontrib><creatorcontrib>Hunkao, Rutchapon</creatorcontrib><creatorcontrib>Srikhirin, Toemsak</creatorcontrib><creatorcontrib>Kanjanaboos, Pongsakorn</creatorcontrib><title>Enhancing High Humidity Stability of Quasi‐2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering</title><title>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</title><description>Perovskite materials show excellent photovoltaic performance along with simple processing and low‐energy requirements. Despite their high power conversion efficiency (PCE), instability in the presence of moisture is still a major challenge. An effective method to enhance perovskite stability is by reducing dimensionality through incorporation of long organic cations into the perovskite crystal, which improves charge‐carrier extraction efficiency of the perovskites compared to conventional 3D perovskites. Quasi‐2D perovskites or 2D/3D perovskites strike a good balance between PCE and stability, having much improved stability compared to 3D structures while retaining excellent optoelectronic properties. Yielding better thermal stability and broader absorption into the near‐infrared, formamidinium iodide (FAI) doping has positive influences yet tends to cause poor surface morphology. Here, we introduce highly stable MA/FA‐based quasi‐2D perovskite fabricated by mixed cation doping (MCD), which is repeated deposition of MA and FA cations onto a quasi‐2D perovskite layer. MCD enables better morphology and surface passivation, leading to fewer defects. MA/FA‐based quasi‐2D perovskite with quasi‐cubic structure has high humidity resistivity, remaining intact after 90 days under 60% relative humidity without encapsulation. The underlying mechanism is further explained by binding and formation energies of cation mixture in solution and perovskite structure through computational analysis. Mixed cation doping (MCD) is a sequential solution processing that opens a new route for high quality and simple perovskite fabrication, providing gradual crystallization and good surface passivation, which leads to larger crystallite size and lower electronic defects. MA/FA‐based quasi‐2D perovskite with MCD treatment has better morphology along with high moisture stability beyond 90 days under 60% RH without encapsulation.</description><subject>2D/3D perovskite</subject><subject>Mixed Cation Doping</subject><subject>Moisture Stability</subject><subject>Quasi-2D Perovskites</subject><issn>2199-692X</issn><issn>2199-692X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1OwzAUhC0EElXplrUv0GI7aYiXVdpSpJYfUSR2kWM_N4bEruK0kB1H4IychERFwI7VGz3NNxoNQueUjCgh7ELaUowYoZwQGvMj1GOU82HE2dPxH32KBt4_k84TjikJeqiZ2VxYaewGL8wmx4tdaZSpG_xQi8wUnXIa3--EN5_vH2yK76Bye_9iasDr3Fg8N0XpcZ1XbtfiK_MGCieiNs7iqdt2ucIq_OCKPdgaz-zGWICq_Z-hEy0KD4Pv20eP89k6WQyXt1fXyWQ5lCxua9OMKBFpDSHEQpGxVqGEKAQZBewyyziJdaiZjCQEmSIyDLWKacRaJ-HAGA_6aHTIlZXzvgKdbitTiqpJKUm77dJuu_RnuxbgB-DVFND8406Tm9Xkl_0CJi12eQ</recordid><startdate>201910</startdate><enddate>201910</enddate><creator>Naikaew, Atittaya</creator><creator>Kumnorkaew, Pisist</creator><creator>Supasai, Thidarat</creator><creator>Suwanna, Sujin</creator><creator>Hunkao, Rutchapon</creator><creator>Srikhirin, Toemsak</creator><creator>Kanjanaboos, Pongsakorn</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4854-1733</orcidid></search><sort><creationdate>201910</creationdate><title>Enhancing High Humidity Stability of Quasi‐2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering</title><author>Naikaew, Atittaya ; Kumnorkaew, Pisist ; Supasai, Thidarat ; Suwanna, Sujin ; Hunkao, Rutchapon ; Srikhirin, Toemsak ; Kanjanaboos, Pongsakorn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2899-1b0da6ffe4e8ad05fd4ce64ec6327bb908f4f2c6ce3bd0c44fd8162d0509e2293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>2D/3D perovskite</topic><topic>Mixed Cation Doping</topic><topic>Moisture Stability</topic><topic>Quasi-2D Perovskites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naikaew, Atittaya</creatorcontrib><creatorcontrib>Kumnorkaew, Pisist</creatorcontrib><creatorcontrib>Supasai, Thidarat</creatorcontrib><creatorcontrib>Suwanna, Sujin</creatorcontrib><creatorcontrib>Hunkao, Rutchapon</creatorcontrib><creatorcontrib>Srikhirin, Toemsak</creatorcontrib><creatorcontrib>Kanjanaboos, Pongsakorn</creatorcontrib><collection>CrossRef</collection><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naikaew, Atittaya</au><au>Kumnorkaew, Pisist</au><au>Supasai, Thidarat</au><au>Suwanna, Sujin</au><au>Hunkao, Rutchapon</au><au>Srikhirin, Toemsak</au><au>Kanjanaboos, Pongsakorn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing High Humidity Stability of Quasi‐2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering</atitle><jtitle>ChemNanoMat : chemistry of nanomaterials for energy, biology and more</jtitle><date>2019-10</date><risdate>2019</risdate><volume>5</volume><issue>10</issue><spage>1280</spage><epage>1288</epage><pages>1280-1288</pages><issn>2199-692X</issn><eissn>2199-692X</eissn><abstract>Perovskite materials show excellent photovoltaic performance along with simple processing and low‐energy requirements. Despite their high power conversion efficiency (PCE), instability in the presence of moisture is still a major challenge. An effective method to enhance perovskite stability is by reducing dimensionality through incorporation of long organic cations into the perovskite crystal, which improves charge‐carrier extraction efficiency of the perovskites compared to conventional 3D perovskites. Quasi‐2D perovskites or 2D/3D perovskites strike a good balance between PCE and stability, having much improved stability compared to 3D structures while retaining excellent optoelectronic properties. Yielding better thermal stability and broader absorption into the near‐infrared, formamidinium iodide (FAI) doping has positive influences yet tends to cause poor surface morphology. Here, we introduce highly stable MA/FA‐based quasi‐2D perovskite fabricated by mixed cation doping (MCD), which is repeated deposition of MA and FA cations onto a quasi‐2D perovskite layer. MCD enables better morphology and surface passivation, leading to fewer defects. MA/FA‐based quasi‐2D perovskite with quasi‐cubic structure has high humidity resistivity, remaining intact after 90 days under 60% relative humidity without encapsulation. The underlying mechanism is further explained by binding and formation energies of cation mixture in solution and perovskite structure through computational analysis. Mixed cation doping (MCD) is a sequential solution processing that opens a new route for high quality and simple perovskite fabrication, providing gradual crystallization and good surface passivation, which leads to larger crystallite size and lower electronic defects. MA/FA‐based quasi‐2D perovskite with MCD treatment has better morphology along with high moisture stability beyond 90 days under 60% RH without encapsulation.</abstract><doi>10.1002/cnma.201900189</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4854-1733</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2199-692X
ispartof ChemNanoMat : chemistry of nanomaterials for energy, biology and more, 2019-10, Vol.5 (10), p.1280-1288
issn 2199-692X
2199-692X
language eng
recordid cdi_crossref_primary_10_1002_cnma_201900189
source Access via Wiley Online Library
subjects 2D/3D perovskite
Mixed Cation Doping
Moisture Stability
Quasi-2D Perovskites
title Enhancing High Humidity Stability of Quasi‐2D Perovskite Thin Films through Mixed Cation Doping and Solvent Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20High%20Humidity%20Stability%20of%20Quasi%E2%80%902D%20Perovskite%20Thin%20Films%20through%20Mixed%20Cation%20Doping%20and%20Solvent%20Engineering&rft.jtitle=ChemNanoMat%20:%20chemistry%20of%20nanomaterials%20for%20energy,%20biology%20and%20more&rft.au=Naikaew,%20Atittaya&rft.date=2019-10&rft.volume=5&rft.issue=10&rft.spage=1280&rft.epage=1288&rft.pages=1280-1288&rft.issn=2199-692X&rft.eissn=2199-692X&rft_id=info:doi/10.1002/cnma.201900189&rft_dat=%3Cwiley_cross%3ECNMA201900189%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true