Non-equilibrium molecular dynamics simulation of the thermocapillary effect

We report on extended computer simulations of the thermocapillary effect in a model liquid biphasic mixture by employing a nonequilibrium molecular dynamics (NEMD) technique. It maintains a constant temperature gradient in the simulated system. We discuss the methodology used and report, after a car...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of chemical engineering 2012-08, Vol.90 (4), p.833-842
Hauptverfasser: Maier, Holger A., Bopp, Philippe A., Hampe, Manfred J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 842
container_issue 4
container_start_page 833
container_title Canadian journal of chemical engineering
container_volume 90
creator Maier, Holger A.
Bopp, Philippe A.
Hampe, Manfred J.
description We report on extended computer simulations of the thermocapillary effect in a model liquid biphasic mixture by employing a nonequilibrium molecular dynamics (NEMD) technique. It maintains a constant temperature gradient in the simulated system. We discuss the methodology used and report, after a careful analysis of the uncertainties inherent to such simulations, first results. The main feature is a stable roll cell convection with flows from hot to cold in the vicinity of the interfaces. This basic pattern persists in systematic variations of the temperature gradients, the size of the simulated systems and several other parameters. We thus assume to be dealing with Marangoni flows (thermocapillary effect) at the microscopic level. © 2012 Canadian Society for Chemical Engineering
doi_str_mv 10.1002/cjce.21659
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cjce_21659</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CJCE21659</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4809-846a068d7c5fe0b16e69b485d96ac03e4a09f37f2b8233e91a193c29993b19dc3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqWw4QuyYYPk4leceIlCaYGqSDxExcZyHFu45FHsVNC_JyXQJYvRaEbnXs1cAE4xGmGEyIVeajMimMdiDwywoAIiLBb7YIAQSiFDlB2CoxCW3UgQwwNwN29qaD7WrnS5d-sqqprS6HWpfFRsalU5HaLgqm7RuqaOGhu1b2Zbvmq0WrmyIzeRsdbo9hgcWFUGc_Lbh-D5evyUTeHsfnKTXc6gZikSMGVcIZ4WiY6tQTnmhoucpXEhuNKIGqaQsDSxJE8JpUZg1T2iiRCC5lgUmg7Bee-rfROCN1auvKu6OyRGchuD3MYgf2Lo4LMeXqmgVWm9qrULOwXhmNOY4I7DPffpSrP5x1Fmt9n4zxv2Ghda87XTKP8ueUKTWL7MJ_IxpWzxejWVD_Qba7p8mQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-equilibrium molecular dynamics simulation of the thermocapillary effect</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Maier, Holger A. ; Bopp, Philippe A. ; Hampe, Manfred J.</creator><creatorcontrib>Maier, Holger A. ; Bopp, Philippe A. ; Hampe, Manfred J.</creatorcontrib><description>We report on extended computer simulations of the thermocapillary effect in a model liquid biphasic mixture by employing a nonequilibrium molecular dynamics (NEMD) technique. It maintains a constant temperature gradient in the simulated system. We discuss the methodology used and report, after a careful analysis of the uncertainties inherent to such simulations, first results. The main feature is a stable roll cell convection with flows from hot to cold in the vicinity of the interfaces. This basic pattern persists in systematic variations of the temperature gradients, the size of the simulated systems and several other parameters. We thus assume to be dealing with Marangoni flows (thermocapillary effect) at the microscopic level. © 2012 Canadian Society for Chemical Engineering</description><identifier>ISSN: 0008-4034</identifier><identifier>EISSN: 1939-019X</identifier><identifier>DOI: 10.1002/cjce.21659</identifier><identifier>CODEN: CJCEA7</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Chemical engineering ; Exact sciences and technology ; fluid mechanics ; modelling and simulation studies ; multi-phase systems ; multi‐phase systems, fluid mechanics ; statistical mechanics and phase transitions ; statistical theory ; transport processes</subject><ispartof>Canadian journal of chemical engineering, 2012-08, Vol.90 (4), p.833-842</ispartof><rights>Copyright © 2012 Canadian Society for Chemical Engineering</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4809-846a068d7c5fe0b16e69b485d96ac03e4a09f37f2b8233e91a193c29993b19dc3</citedby><cites>FETCH-LOGICAL-c4809-846a068d7c5fe0b16e69b485d96ac03e4a09f37f2b8233e91a193c29993b19dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcjce.21659$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcjce.21659$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,1411,23909,23910,25118,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26163521$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Maier, Holger A.</creatorcontrib><creatorcontrib>Bopp, Philippe A.</creatorcontrib><creatorcontrib>Hampe, Manfred J.</creatorcontrib><title>Non-equilibrium molecular dynamics simulation of the thermocapillary effect</title><title>Canadian journal of chemical engineering</title><addtitle>Can. J. Chem. Eng</addtitle><description>We report on extended computer simulations of the thermocapillary effect in a model liquid biphasic mixture by employing a nonequilibrium molecular dynamics (NEMD) technique. It maintains a constant temperature gradient in the simulated system. We discuss the methodology used and report, after a careful analysis of the uncertainties inherent to such simulations, first results. The main feature is a stable roll cell convection with flows from hot to cold in the vicinity of the interfaces. This basic pattern persists in systematic variations of the temperature gradients, the size of the simulated systems and several other parameters. We thus assume to be dealing with Marangoni flows (thermocapillary effect) at the microscopic level. © 2012 Canadian Society for Chemical Engineering</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Exact sciences and technology</subject><subject>fluid mechanics</subject><subject>modelling and simulation studies</subject><subject>multi-phase systems</subject><subject>multi‐phase systems, fluid mechanics</subject><subject>statistical mechanics and phase transitions</subject><subject>statistical theory</subject><subject>transport processes</subject><issn>0008-4034</issn><issn>1939-019X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqWw4QuyYYPk4leceIlCaYGqSDxExcZyHFu45FHsVNC_JyXQJYvRaEbnXs1cAE4xGmGEyIVeajMimMdiDwywoAIiLBb7YIAQSiFDlB2CoxCW3UgQwwNwN29qaD7WrnS5d-sqqprS6HWpfFRsalU5HaLgqm7RuqaOGhu1b2Zbvmq0WrmyIzeRsdbo9hgcWFUGc_Lbh-D5evyUTeHsfnKTXc6gZikSMGVcIZ4WiY6tQTnmhoucpXEhuNKIGqaQsDSxJE8JpUZg1T2iiRCC5lgUmg7Bee-rfROCN1auvKu6OyRGchuD3MYgf2Lo4LMeXqmgVWm9qrULOwXhmNOY4I7DPffpSrP5x1Fmt9n4zxv2Ghda87XTKP8ueUKTWL7MJ_IxpWzxejWVD_Qba7p8mQ</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Maier, Holger A.</creator><creator>Bopp, Philippe A.</creator><creator>Hampe, Manfred J.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201208</creationdate><title>Non-equilibrium molecular dynamics simulation of the thermocapillary effect</title><author>Maier, Holger A. ; Bopp, Philippe A. ; Hampe, Manfred J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4809-846a068d7c5fe0b16e69b485d96ac03e4a09f37f2b8233e91a193c29993b19dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Exact sciences and technology</topic><topic>fluid mechanics</topic><topic>modelling and simulation studies</topic><topic>multi-phase systems</topic><topic>multi‐phase systems, fluid mechanics</topic><topic>statistical mechanics and phase transitions</topic><topic>statistical theory</topic><topic>transport processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maier, Holger A.</creatorcontrib><creatorcontrib>Bopp, Philippe A.</creatorcontrib><creatorcontrib>Hampe, Manfred J.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Canadian journal of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maier, Holger A.</au><au>Bopp, Philippe A.</au><au>Hampe, Manfred J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-equilibrium molecular dynamics simulation of the thermocapillary effect</atitle><jtitle>Canadian journal of chemical engineering</jtitle><addtitle>Can. J. Chem. Eng</addtitle><date>2012-08</date><risdate>2012</risdate><volume>90</volume><issue>4</issue><spage>833</spage><epage>842</epage><pages>833-842</pages><issn>0008-4034</issn><eissn>1939-019X</eissn><coden>CJCEA7</coden><abstract>We report on extended computer simulations of the thermocapillary effect in a model liquid biphasic mixture by employing a nonequilibrium molecular dynamics (NEMD) technique. It maintains a constant temperature gradient in the simulated system. We discuss the methodology used and report, after a careful analysis of the uncertainties inherent to such simulations, first results. The main feature is a stable roll cell convection with flows from hot to cold in the vicinity of the interfaces. This basic pattern persists in systematic variations of the temperature gradients, the size of the simulated systems and several other parameters. We thus assume to be dealing with Marangoni flows (thermocapillary effect) at the microscopic level. © 2012 Canadian Society for Chemical Engineering</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/cjce.21659</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-4034
ispartof Canadian journal of chemical engineering, 2012-08, Vol.90 (4), p.833-842
issn 0008-4034
1939-019X
language eng
recordid cdi_crossref_primary_10_1002_cjce_21659
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Chemical engineering
Exact sciences and technology
fluid mechanics
modelling and simulation studies
multi-phase systems
multi‐phase systems, fluid mechanics
statistical mechanics and phase transitions
statistical theory
transport processes
title Non-equilibrium molecular dynamics simulation of the thermocapillary effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A53%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-equilibrium%20molecular%20dynamics%20simulation%20of%20the%20thermocapillary%20effect&rft.jtitle=Canadian%20journal%20of%20chemical%20engineering&rft.au=Maier,%20Holger%20A.&rft.date=2012-08&rft.volume=90&rft.issue=4&rft.spage=833&rft.epage=842&rft.pages=833-842&rft.issn=0008-4034&rft.eissn=1939-019X&rft.coden=CJCEA7&rft_id=info:doi/10.1002/cjce.21659&rft_dat=%3Cwiley_cross%3ECJCE21659%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true