Application of Artificial Neural Networks for the prediction of undrained shear modulus in cohesive soils

The paper presents a study carried out in a Hollow Cylinder Apparatus (HCA) to determine the shear modulus Gu in undrained conditions. Selected results of tests performed for undisturbed cohesive soils are presented. Values of undrained shear modulus Gu have been determined at shear strain of 0.1% a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ce/papers 2018-06, Vol.2 (2-3), p.833-838
Hauptverfasser: WRZESIŃSKI, Grzegorz, LECHOWICZ, Zbigniew, SULEWSKA, Maria J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 838
container_issue 2-3
container_start_page 833
container_title ce/papers
container_volume 2
creator WRZESIŃSKI, Grzegorz
LECHOWICZ, Zbigniew
SULEWSKA, Maria J.
description The paper presents a study carried out in a Hollow Cylinder Apparatus (HCA) to determine the shear modulus Gu in undrained conditions. Selected results of tests performed for undisturbed cohesive soils are presented. Values of undrained shear modulus Gu have been determined at shear strain of 0.1% and 0.5%. Laboratory tests were performed on slightly overconsolidated clay (Cl) and sandy silty clay (sasiCl) with an overconsolidation ratio OCR of about 3.5 and 2.7, and a plasticity index Ip of 77.6% and 34.7%, respectively. HCA tests were performed with anisotropic consolidation and shearing in undrained conditions. Results of laboratory tests have allowed to assess the influence of the principal stress rotation on the values of undrained shear modulus Gu using Artificial Neural Networks (ANNs).
doi_str_mv 10.1002/cepa.774
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c714-26325b05322e11657979746eff6bdbe9b7a2e2bb88e1c42e7a829a6569b09b803</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EElWpxE_wyJJi3zycjFFVHlIFDN0j27lWDGkc2QlV_z0JBYkF3eHc4Ttn-Ai55WzNGYN7jb1cC5FckAWkrIgEE-nln_-arEJ4Z4zFwHkOsCC27PvWajlY11FnaOkHa6y2sqUvOPrvGI7OfwRqnKdDg7T3WFv9Wxi72kvbYU1Dg9LTg6vHdgzUdlS7BoP9RBqcbcMNuTKyDbj6ySXZP2z3m6do9_r4vCl3kRY8iSCLIVUsjQGQ8ywVxXRJhsZkqlZYKCEBQak8R64TQCFzKGSWZoVihcpZvCR351ntXQgeTdV7e5D-VHFWzZKqWVI1SZrQ6IwebYunf7lqs30rZ_4Ly-Fp3w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of Artificial Neural Networks for the prediction of undrained shear modulus in cohesive soils</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>WRZESIŃSKI, Grzegorz ; LECHOWICZ, Zbigniew ; SULEWSKA, Maria J.</creator><creatorcontrib>WRZESIŃSKI, Grzegorz ; LECHOWICZ, Zbigniew ; SULEWSKA, Maria J.</creatorcontrib><description>The paper presents a study carried out in a Hollow Cylinder Apparatus (HCA) to determine the shear modulus Gu in undrained conditions. Selected results of tests performed for undisturbed cohesive soils are presented. Values of undrained shear modulus Gu have been determined at shear strain of 0.1% and 0.5%. Laboratory tests were performed on slightly overconsolidated clay (Cl) and sandy silty clay (sasiCl) with an overconsolidation ratio OCR of about 3.5 and 2.7, and a plasticity index Ip of 77.6% and 34.7%, respectively. HCA tests were performed with anisotropic consolidation and shearing in undrained conditions. Results of laboratory tests have allowed to assess the influence of the principal stress rotation on the values of undrained shear modulus Gu using Artificial Neural Networks (ANNs).</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.774</identifier><language>eng</language><subject>Artificial Neural Networks ; Cohesive soils ; Hollow Cylinder Apparatus ; Undrained shear modulus</subject><ispartof>ce/papers, 2018-06, Vol.2 (2-3), p.833-838</ispartof><rights>Ernst &amp; Sohn Verlag für Architektur und technische Wissenschaften GmbH &amp; Co. KG, Berlin</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c714-26325b05322e11657979746eff6bdbe9b7a2e2bb88e1c42e7a829a6569b09b803</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcepa.774$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcepa.774$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>WRZESIŃSKI, Grzegorz</creatorcontrib><creatorcontrib>LECHOWICZ, Zbigniew</creatorcontrib><creatorcontrib>SULEWSKA, Maria J.</creatorcontrib><title>Application of Artificial Neural Networks for the prediction of undrained shear modulus in cohesive soils</title><title>ce/papers</title><description>The paper presents a study carried out in a Hollow Cylinder Apparatus (HCA) to determine the shear modulus Gu in undrained conditions. Selected results of tests performed for undisturbed cohesive soils are presented. Values of undrained shear modulus Gu have been determined at shear strain of 0.1% and 0.5%. Laboratory tests were performed on slightly overconsolidated clay (Cl) and sandy silty clay (sasiCl) with an overconsolidation ratio OCR of about 3.5 and 2.7, and a plasticity index Ip of 77.6% and 34.7%, respectively. HCA tests were performed with anisotropic consolidation and shearing in undrained conditions. Results of laboratory tests have allowed to assess the influence of the principal stress rotation on the values of undrained shear modulus Gu using Artificial Neural Networks (ANNs).</description><subject>Artificial Neural Networks</subject><subject>Cohesive soils</subject><subject>Hollow Cylinder Apparatus</subject><subject>Undrained shear modulus</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EElWpxE_wyJJi3zycjFFVHlIFDN0j27lWDGkc2QlV_z0JBYkF3eHc4Ttn-Ai55WzNGYN7jb1cC5FckAWkrIgEE-nln_-arEJ4Z4zFwHkOsCC27PvWajlY11FnaOkHa6y2sqUvOPrvGI7OfwRqnKdDg7T3WFv9Wxi72kvbYU1Dg9LTg6vHdgzUdlS7BoP9RBqcbcMNuTKyDbj6ySXZP2z3m6do9_r4vCl3kRY8iSCLIVUsjQGQ8ywVxXRJhsZkqlZYKCEBQak8R64TQCFzKGSWZoVihcpZvCR351ntXQgeTdV7e5D-VHFWzZKqWVI1SZrQ6IwebYunf7lqs30rZ_4Ly-Fp3w</recordid><startdate>201806</startdate><enddate>201806</enddate><creator>WRZESIŃSKI, Grzegorz</creator><creator>LECHOWICZ, Zbigniew</creator><creator>SULEWSKA, Maria J.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201806</creationdate><title>Application of Artificial Neural Networks for the prediction of undrained shear modulus in cohesive soils</title><author>WRZESIŃSKI, Grzegorz ; LECHOWICZ, Zbigniew ; SULEWSKA, Maria J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c714-26325b05322e11657979746eff6bdbe9b7a2e2bb88e1c42e7a829a6569b09b803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial Neural Networks</topic><topic>Cohesive soils</topic><topic>Hollow Cylinder Apparatus</topic><topic>Undrained shear modulus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WRZESIŃSKI, Grzegorz</creatorcontrib><creatorcontrib>LECHOWICZ, Zbigniew</creatorcontrib><creatorcontrib>SULEWSKA, Maria J.</creatorcontrib><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WRZESIŃSKI, Grzegorz</au><au>LECHOWICZ, Zbigniew</au><au>SULEWSKA, Maria J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Artificial Neural Networks for the prediction of undrained shear modulus in cohesive soils</atitle><jtitle>ce/papers</jtitle><date>2018-06</date><risdate>2018</risdate><volume>2</volume><issue>2-3</issue><spage>833</spage><epage>838</epage><pages>833-838</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>The paper presents a study carried out in a Hollow Cylinder Apparatus (HCA) to determine the shear modulus Gu in undrained conditions. Selected results of tests performed for undisturbed cohesive soils are presented. Values of undrained shear modulus Gu have been determined at shear strain of 0.1% and 0.5%. Laboratory tests were performed on slightly overconsolidated clay (Cl) and sandy silty clay (sasiCl) with an overconsolidation ratio OCR of about 3.5 and 2.7, and a plasticity index Ip of 77.6% and 34.7%, respectively. HCA tests were performed with anisotropic consolidation and shearing in undrained conditions. Results of laboratory tests have allowed to assess the influence of the principal stress rotation on the values of undrained shear modulus Gu using Artificial Neural Networks (ANNs).</abstract><doi>10.1002/cepa.774</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2509-7075
ispartof ce/papers, 2018-06, Vol.2 (2-3), p.833-838
issn 2509-7075
2509-7075
language eng
recordid cdi_crossref_primary_10_1002_cepa_774
source Wiley Online Library Journals Frontfile Complete
subjects Artificial Neural Networks
Cohesive soils
Hollow Cylinder Apparatus
Undrained shear modulus
title Application of Artificial Neural Networks for the prediction of undrained shear modulus in cohesive soils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Artificial%20Neural%20Networks%20for%20the%20prediction%20of%20undrained%20shear%20modulus%20in%20cohesive%20soils&rft.jtitle=ce/papers&rft.au=WRZESI%C5%83SKI,%20Grzegorz&rft.date=2018-06&rft.volume=2&rft.issue=2-3&rft.spage=833&rft.epage=838&rft.pages=833-838&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.774&rft_dat=%3Cwiley_cross%3ECEPA774%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true