Probability of detection curve for the automatic visual inspection of steel bridges
The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depen...
Gespeichert in:
Veröffentlicht in: | ce/papers 2023-09, Vol.6 (3-4), p.814-824 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 824 |
---|---|
container_issue | 3-4 |
container_start_page | 814 |
container_title | ce/papers |
container_volume | 6 |
creator | Kompanets, Andrii Leonetti, Davide Duits, Remco Maljaars, Johan Snijder, H.H. (Bert) |
description | The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network. |
doi_str_mv | 10.1002/cepa.2585 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_2585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA2585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1095-1e6a9769fd5859918adadb8b8e74d6fbb992749d116311d050cab1f9c2c000b53</originalsourceid><addsrcrecordid>eNp1kD1vwjAQhq2qlYooQ_-B1w4Bn4OTeESIfkhIRWo7R_44t64CiWxDxb9vAgxdOt0Nz_vq7iHkHtgUGOMzg52aclGJKzLigsmsZKW4_rPfkkmM34yxnANUnI_I2ya0Wmnf-HSkraMWE5rk2x01-3BA6tpA0xdStU_tViVv6MHHvWqo38XuQvaxmBAbqoO3nxjvyI1TTcTJZY7Jx-PqffmcrV-fXpaLdWaASZEBFkqWhXS2v1hKqJRVVle6wnJuC6e1lLycSwtQ5ACWCWaUBicNN_0HWuRj8nDuNaGNMaCru-C3KhxrYPUgpB6E1IOQnp2d2R_f4PF_sF6uNotT4hfMZmNa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probability of detection curve for the automatic visual inspection of steel bridges</title><source>Wiley-Blackwell Journals</source><creator>Kompanets, Andrii ; Leonetti, Davide ; Duits, Remco ; Maljaars, Johan ; Snijder, H.H. (Bert)</creator><creatorcontrib>Kompanets, Andrii ; Leonetti, Davide ; Duits, Remco ; Maljaars, Johan ; Snijder, H.H. (Bert)</creatorcontrib><description>The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network.</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.2585</identifier><language>eng</language><subject>Bridge inspection ; Computer vision ; Probability of detection</subject><ispartof>ce/papers, 2023-09, Vol.6 (3-4), p.814-824</ispartof><rights>2023 The Authors. Published by Ernst & Sohn GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1095-1e6a9769fd5859918adadb8b8e74d6fbb992749d116311d050cab1f9c2c000b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcepa.2585$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcepa.2585$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kompanets, Andrii</creatorcontrib><creatorcontrib>Leonetti, Davide</creatorcontrib><creatorcontrib>Duits, Remco</creatorcontrib><creatorcontrib>Maljaars, Johan</creatorcontrib><creatorcontrib>Snijder, H.H. (Bert)</creatorcontrib><title>Probability of detection curve for the automatic visual inspection of steel bridges</title><title>ce/papers</title><description>The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network.</description><subject>Bridge inspection</subject><subject>Computer vision</subject><subject>Probability of detection</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD1vwjAQhq2qlYooQ_-B1w4Bn4OTeESIfkhIRWo7R_44t64CiWxDxb9vAgxdOt0Nz_vq7iHkHtgUGOMzg52aclGJKzLigsmsZKW4_rPfkkmM34yxnANUnI_I2ya0Wmnf-HSkraMWE5rk2x01-3BA6tpA0xdStU_tViVv6MHHvWqo38XuQvaxmBAbqoO3nxjvyI1TTcTJZY7Jx-PqffmcrV-fXpaLdWaASZEBFkqWhXS2v1hKqJRVVle6wnJuC6e1lLycSwtQ5ACWCWaUBicNN_0HWuRj8nDuNaGNMaCru-C3KhxrYPUgpB6E1IOQnp2d2R_f4PF_sF6uNotT4hfMZmNa</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Kompanets, Andrii</creator><creator>Leonetti, Davide</creator><creator>Duits, Remco</creator><creator>Maljaars, Johan</creator><creator>Snijder, H.H. (Bert)</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202309</creationdate><title>Probability of detection curve for the automatic visual inspection of steel bridges</title><author>Kompanets, Andrii ; Leonetti, Davide ; Duits, Remco ; Maljaars, Johan ; Snijder, H.H. (Bert)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1095-1e6a9769fd5859918adadb8b8e74d6fbb992749d116311d050cab1f9c2c000b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bridge inspection</topic><topic>Computer vision</topic><topic>Probability of detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kompanets, Andrii</creatorcontrib><creatorcontrib>Leonetti, Davide</creatorcontrib><creatorcontrib>Duits, Remco</creatorcontrib><creatorcontrib>Maljaars, Johan</creatorcontrib><creatorcontrib>Snijder, H.H. (Bert)</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kompanets, Andrii</au><au>Leonetti, Davide</au><au>Duits, Remco</au><au>Maljaars, Johan</au><au>Snijder, H.H. (Bert)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probability of detection curve for the automatic visual inspection of steel bridges</atitle><jtitle>ce/papers</jtitle><date>2023-09</date><risdate>2023</risdate><volume>6</volume><issue>3-4</issue><spage>814</spage><epage>824</epage><pages>814-824</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network.</abstract><doi>10.1002/cepa.2585</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2509-7075 |
ispartof | ce/papers, 2023-09, Vol.6 (3-4), p.814-824 |
issn | 2509-7075 2509-7075 |
language | eng |
recordid | cdi_crossref_primary_10_1002_cepa_2585 |
source | Wiley-Blackwell Journals |
subjects | Bridge inspection Computer vision Probability of detection |
title | Probability of detection curve for the automatic visual inspection of steel bridges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probability%20of%20detection%20curve%20for%20the%20automatic%20visual%20inspection%20of%20steel%20bridges&rft.jtitle=ce/papers&rft.au=Kompanets,%20Andrii&rft.date=2023-09&rft.volume=6&rft.issue=3-4&rft.spage=814&rft.epage=824&rft.pages=814-824&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.2585&rft_dat=%3Cwiley_cross%3ECEPA2585%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |