Probability of detection curve for the automatic visual inspection of steel bridges

The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ce/papers 2023-09, Vol.6 (3-4), p.814-824
Hauptverfasser: Kompanets, Andrii, Leonetti, Davide, Duits, Remco, Maljaars, Johan, Snijder, H.H. (Bert)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 824
container_issue 3-4
container_start_page 814
container_title ce/papers
container_volume 6
creator Kompanets, Andrii
Leonetti, Davide
Duits, Remco
Maljaars, Johan
Snijder, H.H. (Bert)
description The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network.
doi_str_mv 10.1002/cepa.2585
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_2585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA2585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1095-1e6a9769fd5859918adadb8b8e74d6fbb992749d116311d050cab1f9c2c000b53</originalsourceid><addsrcrecordid>eNp1kD1vwjAQhq2qlYooQ_-B1w4Bn4OTeESIfkhIRWo7R_44t64CiWxDxb9vAgxdOt0Nz_vq7iHkHtgUGOMzg52aclGJKzLigsmsZKW4_rPfkkmM34yxnANUnI_I2ya0Wmnf-HSkraMWE5rk2x01-3BA6tpA0xdStU_tViVv6MHHvWqo38XuQvaxmBAbqoO3nxjvyI1TTcTJZY7Jx-PqffmcrV-fXpaLdWaASZEBFkqWhXS2v1hKqJRVVle6wnJuC6e1lLycSwtQ5ACWCWaUBicNN_0HWuRj8nDuNaGNMaCru-C3KhxrYPUgpB6E1IOQnp2d2R_f4PF_sF6uNotT4hfMZmNa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Probability of detection curve for the automatic visual inspection of steel bridges</title><source>Wiley-Blackwell Journals</source><creator>Kompanets, Andrii ; Leonetti, Davide ; Duits, Remco ; Maljaars, Johan ; Snijder, H.H. (Bert)</creator><creatorcontrib>Kompanets, Andrii ; Leonetti, Davide ; Duits, Remco ; Maljaars, Johan ; Snijder, H.H. (Bert)</creatorcontrib><description>The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network.</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.2585</identifier><language>eng</language><subject>Bridge inspection ; Computer vision ; Probability of detection</subject><ispartof>ce/papers, 2023-09, Vol.6 (3-4), p.814-824</ispartof><rights>2023 The Authors. Published by Ernst &amp; Sohn GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1095-1e6a9769fd5859918adadb8b8e74d6fbb992749d116311d050cab1f9c2c000b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcepa.2585$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcepa.2585$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Kompanets, Andrii</creatorcontrib><creatorcontrib>Leonetti, Davide</creatorcontrib><creatorcontrib>Duits, Remco</creatorcontrib><creatorcontrib>Maljaars, Johan</creatorcontrib><creatorcontrib>Snijder, H.H. (Bert)</creatorcontrib><title>Probability of detection curve for the automatic visual inspection of steel bridges</title><title>ce/papers</title><description>The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network.</description><subject>Bridge inspection</subject><subject>Computer vision</subject><subject>Probability of detection</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD1vwjAQhq2qlYooQ_-B1w4Bn4OTeESIfkhIRWo7R_44t64CiWxDxb9vAgxdOt0Nz_vq7iHkHtgUGOMzg52aclGJKzLigsmsZKW4_rPfkkmM34yxnANUnI_I2ya0Wmnf-HSkraMWE5rk2x01-3BA6tpA0xdStU_tViVv6MHHvWqo38XuQvaxmBAbqoO3nxjvyI1TTcTJZY7Jx-PqffmcrV-fXpaLdWaASZEBFkqWhXS2v1hKqJRVVle6wnJuC6e1lLycSwtQ5ACWCWaUBicNN_0HWuRj8nDuNaGNMaCru-C3KhxrYPUgpB6E1IOQnp2d2R_f4PF_sF6uNotT4hfMZmNa</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Kompanets, Andrii</creator><creator>Leonetti, Davide</creator><creator>Duits, Remco</creator><creator>Maljaars, Johan</creator><creator>Snijder, H.H. (Bert)</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202309</creationdate><title>Probability of detection curve for the automatic visual inspection of steel bridges</title><author>Kompanets, Andrii ; Leonetti, Davide ; Duits, Remco ; Maljaars, Johan ; Snijder, H.H. (Bert)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1095-1e6a9769fd5859918adadb8b8e74d6fbb992749d116311d050cab1f9c2c000b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bridge inspection</topic><topic>Computer vision</topic><topic>Probability of detection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kompanets, Andrii</creatorcontrib><creatorcontrib>Leonetti, Davide</creatorcontrib><creatorcontrib>Duits, Remco</creatorcontrib><creatorcontrib>Maljaars, Johan</creatorcontrib><creatorcontrib>Snijder, H.H. (Bert)</creatorcontrib><collection>Wiley Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kompanets, Andrii</au><au>Leonetti, Davide</au><au>Duits, Remco</au><au>Maljaars, Johan</au><au>Snijder, H.H. (Bert)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probability of detection curve for the automatic visual inspection of steel bridges</atitle><jtitle>ce/papers</jtitle><date>2023-09</date><risdate>2023</risdate><volume>6</volume><issue>3-4</issue><spage>814</spage><epage>824</epage><pages>814-824</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>The damage tolerant design philosophy is based on periodical inspections and provides safe bridge operation preventing fatigue cracks from growing up to a critical size. It is possible to optimize the management costs of a bridge throughout its life by designing the inspection frequency, which depends on the capabilities of the inspection method. However, such optimization requires knowledge about the performance of inspections that are envisioned to take place during the use of the bridge. Regular visual inspections is the most frequently applied type of inspection of bridge structures. Recent advances in computer vision technologies provide a strong basis for the development of automatic damage detection systems that can support regular visual inspection, thus increasing the reliability of the inspection. Several automatic crack detection systems have been developed in the past years. However, the performances of such systems have not been evaluated in the way as for traditional non‐destructive inspection methods, i.e. in terms of probability of detection curves and detectability limits. This restricts the applicability of automatic visual inspections for inspection planning and damage tolerant design. This paper proposes an encoder‐decoder neural network for segmentation of cracks on images of steel bridges. A probability of detection curve is calculated for this neural network.</abstract><doi>10.1002/cepa.2585</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2509-7075
ispartof ce/papers, 2023-09, Vol.6 (3-4), p.814-824
issn 2509-7075
2509-7075
language eng
recordid cdi_crossref_primary_10_1002_cepa_2585
source Wiley-Blackwell Journals
subjects Bridge inspection
Computer vision
Probability of detection
title Probability of detection curve for the automatic visual inspection of steel bridges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T23%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probability%20of%20detection%20curve%20for%20the%20automatic%20visual%20inspection%20of%20steel%20bridges&rft.jtitle=ce/papers&rft.au=Kompanets,%20Andrii&rft.date=2023-09&rft.volume=6&rft.issue=3-4&rft.spage=814&rft.epage=824&rft.pages=814-824&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.2585&rft_dat=%3Cwiley_cross%3ECEPA2585%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true