A Bayesian Framework for Simulation‐based Digital Twins of Bridges
Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual se...
Gespeichert in:
Veröffentlicht in: | ce/papers 2023-09, Vol.6 (5), p.734-740 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 740 |
---|---|
container_issue | 5 |
container_start_page | 734 |
container_title | ce/papers |
container_volume | 6 |
creator | Arcones, Daniel Andrés Weiser, Martin Koutsourelakis, Faidon‐Stelios Unger, Jörg F. |
description | Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management. |
doi_str_mv | 10.1002/cepa.2177 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_2177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA2177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1947-2336045d62983ce5d5475bebbe8ade08690c6597b1e1d04ce316ab43619df7e73</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7bcdxMqZpC0iVQKLMkRPfVIb8VHZRlI1H4Bl5EghlYGE6Z_jOGT5CrhnMGQBflHjQc86UOiMTLiEJFCh5_qdfkpn3LwAgOGMx5xOySulSD-itbunG6Qb7zr3SqnP0yTZvtT7arv18_yi0R0NXdm-Puqa73raedhVdOmv26K_IRaVrj7PfnJLnzXqX3QXbh9v7LN0GJUtCFXAhIgiliXgSixKlkaGSBRYFxtogxFECZSQTVTBkBsISBYt0EYqIJaZSqMSU3Jx-S9d577DKD8422g05g3w0kI8G8tHAN7s4sb2tcfgfzLP1Y_qz-ALKQl1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Arcones, Daniel Andrés ; Weiser, Martin ; Koutsourelakis, Faidon‐Stelios ; Unger, Jörg F.</creator><creatorcontrib>Arcones, Daniel Andrés ; Weiser, Martin ; Koutsourelakis, Faidon‐Stelios ; Unger, Jörg F.</creatorcontrib><description>Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management.</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.2177</identifier><language>eng</language><subject>Bayesian Inference ; Bridge Monitoring ; Digital Twins ; Uncertainty Quantification</subject><ispartof>ce/papers, 2023-09, Vol.6 (5), p.734-740</ispartof><rights>2023 The Authors. Published by Ernst & Sohn GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1947-2336045d62983ce5d5475bebbe8ade08690c6597b1e1d04ce316ab43619df7e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcepa.2177$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcepa.2177$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arcones, Daniel Andrés</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><creatorcontrib>Koutsourelakis, Faidon‐Stelios</creatorcontrib><creatorcontrib>Unger, Jörg F.</creatorcontrib><title>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</title><title>ce/papers</title><description>Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management.</description><subject>Bayesian Inference</subject><subject>Bridge Monitoring</subject><subject>Digital Twins</subject><subject>Uncertainty Quantification</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7bcdxMqZpC0iVQKLMkRPfVIb8VHZRlI1H4Bl5EghlYGE6Z_jOGT5CrhnMGQBflHjQc86UOiMTLiEJFCh5_qdfkpn3LwAgOGMx5xOySulSD-itbunG6Qb7zr3SqnP0yTZvtT7arv18_yi0R0NXdm-Puqa73raedhVdOmv26K_IRaVrj7PfnJLnzXqX3QXbh9v7LN0GJUtCFXAhIgiliXgSixKlkaGSBRYFxtogxFECZSQTVTBkBsISBYt0EYqIJaZSqMSU3Jx-S9d577DKD8422g05g3w0kI8G8tHAN7s4sb2tcfgfzLP1Y_qz-ALKQl1s</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Arcones, Daniel Andrés</creator><creator>Weiser, Martin</creator><creator>Koutsourelakis, Faidon‐Stelios</creator><creator>Unger, Jörg F.</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202309</creationdate><title>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</title><author>Arcones, Daniel Andrés ; Weiser, Martin ; Koutsourelakis, Faidon‐Stelios ; Unger, Jörg F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1947-2336045d62983ce5d5475bebbe8ade08690c6597b1e1d04ce316ab43619df7e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian Inference</topic><topic>Bridge Monitoring</topic><topic>Digital Twins</topic><topic>Uncertainty Quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcones, Daniel Andrés</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><creatorcontrib>Koutsourelakis, Faidon‐Stelios</creatorcontrib><creatorcontrib>Unger, Jörg F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcones, Daniel Andrés</au><au>Weiser, Martin</au><au>Koutsourelakis, Faidon‐Stelios</au><au>Unger, Jörg F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</atitle><jtitle>ce/papers</jtitle><date>2023-09</date><risdate>2023</risdate><volume>6</volume><issue>5</issue><spage>734</spage><epage>740</epage><pages>734-740</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management.</abstract><doi>10.1002/cepa.2177</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2509-7075 |
ispartof | ce/papers, 2023-09, Vol.6 (5), p.734-740 |
issn | 2509-7075 2509-7075 |
language | eng |
recordid | cdi_crossref_primary_10_1002_cepa_2177 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bayesian Inference Bridge Monitoring Digital Twins Uncertainty Quantification |
title | A Bayesian Framework for Simulation‐based Digital Twins of Bridges |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Framework%20for%20Simulation%E2%80%90based%20Digital%20Twins%20of%20Bridges&rft.jtitle=ce/papers&rft.au=Arcones,%20Daniel%20Andr%C3%A9s&rft.date=2023-09&rft.volume=6&rft.issue=5&rft.spage=734&rft.epage=740&rft.pages=734-740&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.2177&rft_dat=%3Cwiley_cross%3ECEPA2177%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |