A Bayesian Framework for Simulation‐based Digital Twins of Bridges

Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ce/papers 2023-09, Vol.6 (5), p.734-740
Hauptverfasser: Arcones, Daniel Andrés, Weiser, Martin, Koutsourelakis, Faidon‐Stelios, Unger, Jörg F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 5
container_start_page 734
container_title ce/papers
container_volume 6
creator Arcones, Daniel Andrés
Weiser, Martin
Koutsourelakis, Faidon‐Stelios
Unger, Jörg F.
description Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management.
doi_str_mv 10.1002/cepa.2177
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_2177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA2177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1947-2336045d62983ce5d5475bebbe8ade08690c6597b1e1d04ce316ab43619df7e73</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7bcdxMqZpC0iVQKLMkRPfVIb8VHZRlI1H4Bl5EghlYGE6Z_jOGT5CrhnMGQBflHjQc86UOiMTLiEJFCh5_qdfkpn3LwAgOGMx5xOySulSD-itbunG6Qb7zr3SqnP0yTZvtT7arv18_yi0R0NXdm-Puqa73raedhVdOmv26K_IRaVrj7PfnJLnzXqX3QXbh9v7LN0GJUtCFXAhIgiliXgSixKlkaGSBRYFxtogxFECZSQTVTBkBsISBYt0EYqIJaZSqMSU3Jx-S9d577DKD8422g05g3w0kI8G8tHAN7s4sb2tcfgfzLP1Y_qz-ALKQl1s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Arcones, Daniel Andrés ; Weiser, Martin ; Koutsourelakis, Faidon‐Stelios ; Unger, Jörg F.</creator><creatorcontrib>Arcones, Daniel Andrés ; Weiser, Martin ; Koutsourelakis, Faidon‐Stelios ; Unger, Jörg F.</creatorcontrib><description>Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management.</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.2177</identifier><language>eng</language><subject>Bayesian Inference ; Bridge Monitoring ; Digital Twins ; Uncertainty Quantification</subject><ispartof>ce/papers, 2023-09, Vol.6 (5), p.734-740</ispartof><rights>2023 The Authors. Published by Ernst &amp; Sohn GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1947-2336045d62983ce5d5475bebbe8ade08690c6597b1e1d04ce316ab43619df7e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcepa.2177$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcepa.2177$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arcones, Daniel Andrés</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><creatorcontrib>Koutsourelakis, Faidon‐Stelios</creatorcontrib><creatorcontrib>Unger, Jörg F.</creatorcontrib><title>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</title><title>ce/papers</title><description>Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management.</description><subject>Bayesian Inference</subject><subject>Bridge Monitoring</subject><subject>Digital Twins</subject><subject>Uncertainty Quantification</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kL1OwzAUhS0EElXpwBt4ZUh7bcdxMqZpC0iVQKLMkRPfVIb8VHZRlI1H4Bl5EghlYGE6Z_jOGT5CrhnMGQBflHjQc86UOiMTLiEJFCh5_qdfkpn3LwAgOGMx5xOySulSD-itbunG6Qb7zr3SqnP0yTZvtT7arv18_yi0R0NXdm-Puqa73raedhVdOmv26K_IRaVrj7PfnJLnzXqX3QXbh9v7LN0GJUtCFXAhIgiliXgSixKlkaGSBRYFxtogxFECZSQTVTBkBsISBYt0EYqIJaZSqMSU3Jx-S9d577DKD8422g05g3w0kI8G8tHAN7s4sb2tcfgfzLP1Y_qz-ALKQl1s</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Arcones, Daniel Andrés</creator><creator>Weiser, Martin</creator><creator>Koutsourelakis, Faidon‐Stelios</creator><creator>Unger, Jörg F.</creator><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202309</creationdate><title>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</title><author>Arcones, Daniel Andrés ; Weiser, Martin ; Koutsourelakis, Faidon‐Stelios ; Unger, Jörg F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1947-2336045d62983ce5d5475bebbe8ade08690c6597b1e1d04ce316ab43619df7e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Bayesian Inference</topic><topic>Bridge Monitoring</topic><topic>Digital Twins</topic><topic>Uncertainty Quantification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arcones, Daniel Andrés</creatorcontrib><creatorcontrib>Weiser, Martin</creatorcontrib><creatorcontrib>Koutsourelakis, Faidon‐Stelios</creatorcontrib><creatorcontrib>Unger, Jörg F.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arcones, Daniel Andrés</au><au>Weiser, Martin</au><au>Koutsourelakis, Faidon‐Stelios</au><au>Unger, Jörg F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bayesian Framework for Simulation‐based Digital Twins of Bridges</atitle><jtitle>ce/papers</jtitle><date>2023-09</date><risdate>2023</risdate><volume>6</volume><issue>5</issue><spage>734</spage><epage>740</epage><pages>734-740</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>Simulation‐based digital twins have emerged as a powerful tool for evaluating the mechanical response of bridges. As virtual representations of physical systems, digital twins can provide a wealth of information that complements traditional inspection and monitoring data. By incorporating virtual sensors and predictive maintenance strategies, they have the potential to improve our understanding of the behavior and performance of bridges over time. However, as bridges age and undergo regular loading and extreme events, their structural characteristics change, often differing from the predictions of their initial design. Digital twins must be continuously adapted to reflect these changes. In this article, we present a Bayesian framework for updating simulation‐based digital twins in the context of bridges. Our approach integrates information from measurements to account for inaccuracies in the simulation model and quantify uncertainties. Through its implementation and assessment, this work demonstrates the potential for digital twins to provide a reliable and up‐to‐date representation of bridge behavior, helping to inform decision‐making for maintenance and management.</abstract><doi>10.1002/cepa.2177</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2509-7075
ispartof ce/papers, 2023-09, Vol.6 (5), p.734-740
issn 2509-7075
2509-7075
language eng
recordid cdi_crossref_primary_10_1002_cepa_2177
source Wiley Online Library Journals Frontfile Complete
subjects Bayesian Inference
Bridge Monitoring
Digital Twins
Uncertainty Quantification
title A Bayesian Framework for Simulation‐based Digital Twins of Bridges
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bayesian%20Framework%20for%20Simulation%E2%80%90based%20Digital%20Twins%20of%20Bridges&rft.jtitle=ce/papers&rft.au=Arcones,%20Daniel%20Andr%C3%A9s&rft.date=2023-09&rft.volume=6&rft.issue=5&rft.spage=734&rft.epage=740&rft.pages=734-740&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.2177&rft_dat=%3Cwiley_cross%3ECEPA2177%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true