Virtual Axle Detector: Train Axle Localization based on Bridge Vibrations

Infrastructure worldwide is facing the challenge of aging bridges and increasing traffic loads. Prolonged serviceability and safety of these structures can be enabled by Structural Health Monitoring (SHM) methods. Knowledge of the actual operating loads is critical for evaluation of the remaining se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ce/papers 2023-09, Vol.6 (5), p.718-724
Hauptverfasser: Riedel, Henrik, Lorenzen, Steven Robert, Rupp, Maximilian Michael, Fritzsche, Max Alois, Schneider, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 724
container_issue 5
container_start_page 718
container_title ce/papers
container_volume 6
creator Riedel, Henrik
Lorenzen, Steven Robert
Rupp, Maximilian Michael
Fritzsche, Max Alois
Schneider, Jens
description Infrastructure worldwide is facing the challenge of aging bridges and increasing traffic loads. Prolonged serviceability and safety of these structures can be enabled by Structural Health Monitoring (SHM) methods. Knowledge of the actual operating loads is critical for evaluation of the remaining service life. However, direct measurement of the loads is challenging and requires a significant financial investment. Bridge Weigh‐In‐Motion (BWIM) methods use the structural response of bridge structures to determine loads, but generally rely on accurate knowledge of the position of loads as a function of time. Positions can be determined using conventional axle detectors, but their lifetime is limited, and their installation is expensive. To avoid these problems, we propose an improved Virtual Axle Detector (VAD) with Enhanced Receptive field (VADER) that can detect axles for all bridge types using accelerometers that can be placed anywhere along the bridge. The same data set with 3787 train passages recorded on a steel trough railway bridge under real operating conditions was used. Our results show that, in comparison with VAD, VADER reduces the number of undetected axles by over 79% and detects 99.5% of axles with an average spatial accuracy of 4.6 cm.
doi_str_mv 10.1002/cepa.2056
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_2056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA2056</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1946-ea4e51dab67ed69a99633fc349f96fb45258a2b053ab278d5e9af9c19bee10743</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EElXpwD_IypDWH3ESs4XSQqVIMJSu1jk5I6PQVHYQlF9P0jCwMN2ru-e94SHkmtE5o5QvKjzAnFOZnpEJl1TFGc3k-Z98SWYhvFFKBWcs53xCNjvnuw9oouKrwegeO6y61t9GWw9uPy7LtoLGfUPn2n1kIGAd9eHOu_oVo50z_nQJV-TCQhNw9jun5GW92i4f4_LpYbMsyrhiKkljhAQlq8GkGdapAqVSIWwlEmVVak0iucyBGyoFGJ7ltUQFVvVdg8hologpuRn_Vr4NwaPVB-_ewR81o3rQoAcNetDQs4uR_XQNHv8H9XL1XJwaP3L4Xt0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Virtual Axle Detector: Train Axle Localization based on Bridge Vibrations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Riedel, Henrik ; Lorenzen, Steven Robert ; Rupp, Maximilian Michael ; Fritzsche, Max Alois ; Schneider, Jens</creator><creatorcontrib>Riedel, Henrik ; Lorenzen, Steven Robert ; Rupp, Maximilian Michael ; Fritzsche, Max Alois ; Schneider, Jens</creatorcontrib><description>Infrastructure worldwide is facing the challenge of aging bridges and increasing traffic loads. Prolonged serviceability and safety of these structures can be enabled by Structural Health Monitoring (SHM) methods. Knowledge of the actual operating loads is critical for evaluation of the remaining service life. However, direct measurement of the loads is challenging and requires a significant financial investment. Bridge Weigh‐In‐Motion (BWIM) methods use the structural response of bridge structures to determine loads, but generally rely on accurate knowledge of the position of loads as a function of time. Positions can be determined using conventional axle detectors, but their lifetime is limited, and their installation is expensive. To avoid these problems, we propose an improved Virtual Axle Detector (VAD) with Enhanced Receptive field (VADER) that can detect axles for all bridge types using accelerometers that can be placed anywhere along the bridge. The same data set with 3787 train passages recorded on a steel trough railway bridge under real operating conditions was used. Our results show that, in comparison with VAD, VADER reduces the number of undetected axles by over 79% and detects 99.5% of axles with an average spatial accuracy of 4.6 cm.</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.2056</identifier><language>eng</language><subject>bridge weigh‐in‐motion ; field validation ; free‐of‐axle‐detector ; fully convolutional networks ; machine learning ; moving load localization ; nothing‐on‐road ; structural health monitoring</subject><ispartof>ce/papers, 2023-09, Vol.6 (5), p.718-724</ispartof><rights>2023 The Authors. Published by Ernst &amp; Sohn GmbH.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1946-ea4e51dab67ed69a99633fc349f96fb45258a2b053ab278d5e9af9c19bee10743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcepa.2056$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcepa.2056$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Riedel, Henrik</creatorcontrib><creatorcontrib>Lorenzen, Steven Robert</creatorcontrib><creatorcontrib>Rupp, Maximilian Michael</creatorcontrib><creatorcontrib>Fritzsche, Max Alois</creatorcontrib><creatorcontrib>Schneider, Jens</creatorcontrib><title>Virtual Axle Detector: Train Axle Localization based on Bridge Vibrations</title><title>ce/papers</title><description>Infrastructure worldwide is facing the challenge of aging bridges and increasing traffic loads. Prolonged serviceability and safety of these structures can be enabled by Structural Health Monitoring (SHM) methods. Knowledge of the actual operating loads is critical for evaluation of the remaining service life. However, direct measurement of the loads is challenging and requires a significant financial investment. Bridge Weigh‐In‐Motion (BWIM) methods use the structural response of bridge structures to determine loads, but generally rely on accurate knowledge of the position of loads as a function of time. Positions can be determined using conventional axle detectors, but their lifetime is limited, and their installation is expensive. To avoid these problems, we propose an improved Virtual Axle Detector (VAD) with Enhanced Receptive field (VADER) that can detect axles for all bridge types using accelerometers that can be placed anywhere along the bridge. The same data set with 3787 train passages recorded on a steel trough railway bridge under real operating conditions was used. Our results show that, in comparison with VAD, VADER reduces the number of undetected axles by over 79% and detects 99.5% of axles with an average spatial accuracy of 4.6 cm.</description><subject>bridge weigh‐in‐motion</subject><subject>field validation</subject><subject>free‐of‐axle‐detector</subject><subject>fully convolutional networks</subject><subject>machine learning</subject><subject>moving load localization</subject><subject>nothing‐on‐road</subject><subject>structural health monitoring</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kD1PwzAQhi0EElXpwD_IypDWH3ESs4XSQqVIMJSu1jk5I6PQVHYQlF9P0jCwMN2ru-e94SHkmtE5o5QvKjzAnFOZnpEJl1TFGc3k-Z98SWYhvFFKBWcs53xCNjvnuw9oouKrwegeO6y61t9GWw9uPy7LtoLGfUPn2n1kIGAd9eHOu_oVo50z_nQJV-TCQhNw9jun5GW92i4f4_LpYbMsyrhiKkljhAQlq8GkGdapAqVSIWwlEmVVak0iucyBGyoFGJ7ltUQFVvVdg8hologpuRn_Vr4NwaPVB-_ewR81o3rQoAcNetDQs4uR_XQNHv8H9XL1XJwaP3L4Xt0</recordid><startdate>202309</startdate><enddate>202309</enddate><creator>Riedel, Henrik</creator><creator>Lorenzen, Steven Robert</creator><creator>Rupp, Maximilian Michael</creator><creator>Fritzsche, Max Alois</creator><creator>Schneider, Jens</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202309</creationdate><title>Virtual Axle Detector: Train Axle Localization based on Bridge Vibrations</title><author>Riedel, Henrik ; Lorenzen, Steven Robert ; Rupp, Maximilian Michael ; Fritzsche, Max Alois ; Schneider, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1946-ea4e51dab67ed69a99633fc349f96fb45258a2b053ab278d5e9af9c19bee10743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>bridge weigh‐in‐motion</topic><topic>field validation</topic><topic>free‐of‐axle‐detector</topic><topic>fully convolutional networks</topic><topic>machine learning</topic><topic>moving load localization</topic><topic>nothing‐on‐road</topic><topic>structural health monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riedel, Henrik</creatorcontrib><creatorcontrib>Lorenzen, Steven Robert</creatorcontrib><creatorcontrib>Rupp, Maximilian Michael</creatorcontrib><creatorcontrib>Fritzsche, Max Alois</creatorcontrib><creatorcontrib>Schneider, Jens</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riedel, Henrik</au><au>Lorenzen, Steven Robert</au><au>Rupp, Maximilian Michael</au><au>Fritzsche, Max Alois</au><au>Schneider, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual Axle Detector: Train Axle Localization based on Bridge Vibrations</atitle><jtitle>ce/papers</jtitle><date>2023-09</date><risdate>2023</risdate><volume>6</volume><issue>5</issue><spage>718</spage><epage>724</epage><pages>718-724</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>Infrastructure worldwide is facing the challenge of aging bridges and increasing traffic loads. Prolonged serviceability and safety of these structures can be enabled by Structural Health Monitoring (SHM) methods. Knowledge of the actual operating loads is critical for evaluation of the remaining service life. However, direct measurement of the loads is challenging and requires a significant financial investment. Bridge Weigh‐In‐Motion (BWIM) methods use the structural response of bridge structures to determine loads, but generally rely on accurate knowledge of the position of loads as a function of time. Positions can be determined using conventional axle detectors, but their lifetime is limited, and their installation is expensive. To avoid these problems, we propose an improved Virtual Axle Detector (VAD) with Enhanced Receptive field (VADER) that can detect axles for all bridge types using accelerometers that can be placed anywhere along the bridge. The same data set with 3787 train passages recorded on a steel trough railway bridge under real operating conditions was used. Our results show that, in comparison with VAD, VADER reduces the number of undetected axles by over 79% and detects 99.5% of axles with an average spatial accuracy of 4.6 cm.</abstract><doi>10.1002/cepa.2056</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2509-7075
ispartof ce/papers, 2023-09, Vol.6 (5), p.718-724
issn 2509-7075
2509-7075
language eng
recordid cdi_crossref_primary_10_1002_cepa_2056
source Wiley Online Library Journals Frontfile Complete
subjects bridge weigh‐in‐motion
field validation
free‐of‐axle‐detector
fully convolutional networks
machine learning
moving load localization
nothing‐on‐road
structural health monitoring
title Virtual Axle Detector: Train Axle Localization based on Bridge Vibrations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T06%3A34%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20Axle%20Detector:%20Train%20Axle%20Localization%20based%20on%20Bridge%20Vibrations&rft.jtitle=ce/papers&rft.au=Riedel,%20Henrik&rft.date=2023-09&rft.volume=6&rft.issue=5&rft.spage=718&rft.epage=724&rft.pages=718-724&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.2056&rft_dat=%3Cwiley_cross%3ECEPA2056%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true