Experimental and numerical investigations on the rotation capacity of high strength steel beams

In order to design efficient and highly utilised sections, the plastic/plastic design approach depicts a valuable tool. Concerning plastic design, Eurocode 3 requires only Class 1 cross‐sections and material grades up to S460, depicting conventional strength steels (CSS), to be used. High strength s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ce/papers 2021-09, Vol.4 (2-4), p.1630-1636
Hauptverfasser: Bartsch, Helen, Pauli, Gesa, Eyben, Felix, Schaffrath, Simon, Feldmann, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1636
container_issue 2-4
container_start_page 1630
container_title ce/papers
container_volume 4
creator Bartsch, Helen
Pauli, Gesa
Eyben, Felix
Schaffrath, Simon
Feldmann, Markus
description In order to design efficient and highly utilised sections, the plastic/plastic design approach depicts a valuable tool. Concerning plastic design, Eurocode 3 requires only Class 1 cross‐sections and material grades up to S460, depicting conventional strength steels (CSS), to be used. High strength steels (HSS) with yield strengths up to 700 MPa are not considered appropriate for plastic design due to their lower ductility. However, the exclusion of HSS appears to be unnecessary in the light of recent test results. Experimental investigations on 20 homogeneous and hybrid high strength double symmetric I‐section beams have been conducted comprising various slenderness characteristics of flange and web and different span lengths. The results show that the rotation capacity value of R = 3, currently required by EC3 regulations, can actually be achieved by high strength steel beams depending on their cross‐sectional characteristics. Additionally, the experimental tests have been recalculated numerically. The material characteristics of the models have been defined by flow curves, which have firstly been calibrated on the basis of small‐scale tensile tests and furthermore slightly fitted to the full‐scale test results. Ductile material failure in terms of crack initiation and evolution is considered by incorporating a damage mechanics model. It can be shown that experimental and numerical results show very good accordance.
doi_str_mv 10.1002/cepa.1466
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cepa_1466</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEPA1466</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1146-f871ca4475fb97616b4daa7ebb2f3064061899d9e6c00c276f77344e2cc3c74f3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EElXpwD_wypD27Dh2M1ZV-ZAqwQCz5bjn1Ch1oth89N-TtAwsTPfeq_dOdw8htwzmDIAvLHZmzoSUF2TCCygzBaq4_KOvySzGdwDIOWNLzidEb7477P0BQzINNWFHw8dhMOzQ-fCJMfnaJN-GSNtA0x5p36aTQa3pjPXpSFtH977e05h6DHUaBWJDKzSHeEOunGkizn7rlLzdb17Xj9n2-eFpvdpmlg0HZ26pmDVCqMJVpZJMVmJnjMKq4i4HKUCyZVnuSpQWwHIlnVK5EMitza0SLp-Su_Ne27cx9uh0N3xl-qNmoEc4eoSjRzhDdnHOfvkGj_8H9XrzsjpN_ACWhmfi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Experimental and numerical investigations on the rotation capacity of high strength steel beams</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bartsch, Helen ; Pauli, Gesa ; Eyben, Felix ; Schaffrath, Simon ; Feldmann, Markus</creator><creatorcontrib>Bartsch, Helen ; Pauli, Gesa ; Eyben, Felix ; Schaffrath, Simon ; Feldmann, Markus</creatorcontrib><description>In order to design efficient and highly utilised sections, the plastic/plastic design approach depicts a valuable tool. Concerning plastic design, Eurocode 3 requires only Class 1 cross‐sections and material grades up to S460, depicting conventional strength steels (CSS), to be used. High strength steels (HSS) with yield strengths up to 700 MPa are not considered appropriate for plastic design due to their lower ductility. However, the exclusion of HSS appears to be unnecessary in the light of recent test results. Experimental investigations on 20 homogeneous and hybrid high strength double symmetric I‐section beams have been conducted comprising various slenderness characteristics of flange and web and different span lengths. The results show that the rotation capacity value of R = 3, currently required by EC3 regulations, can actually be achieved by high strength steel beams depending on their cross‐sectional characteristics. Additionally, the experimental tests have been recalculated numerically. The material characteristics of the models have been defined by flow curves, which have firstly been calibrated on the basis of small‐scale tensile tests and furthermore slightly fitted to the full‐scale test results. Ductile material failure in terms of crack initiation and evolution is considered by incorporating a damage mechanics model. It can be shown that experimental and numerical results show very good accordance.</description><identifier>ISSN: 2509-7075</identifier><identifier>EISSN: 2509-7075</identifier><identifier>DOI: 10.1002/cepa.1466</identifier><language>eng</language><subject>high strength steel ; plastic design ; Rotation capacity</subject><ispartof>ce/papers, 2021-09, Vol.4 (2-4), p.1630-1636</ispartof><rights>2021 Ernst &amp; Sohn Verlag für Architektur und technische Wissenschaften GmbH &amp; Co. KG, Berlin</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1146-f871ca4475fb97616b4daa7ebb2f3064061899d9e6c00c276f77344e2cc3c74f3</citedby><cites>FETCH-LOGICAL-c1146-f871ca4475fb97616b4daa7ebb2f3064061899d9e6c00c276f77344e2cc3c74f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcepa.1466$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcepa.1466$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Bartsch, Helen</creatorcontrib><creatorcontrib>Pauli, Gesa</creatorcontrib><creatorcontrib>Eyben, Felix</creatorcontrib><creatorcontrib>Schaffrath, Simon</creatorcontrib><creatorcontrib>Feldmann, Markus</creatorcontrib><title>Experimental and numerical investigations on the rotation capacity of high strength steel beams</title><title>ce/papers</title><description>In order to design efficient and highly utilised sections, the plastic/plastic design approach depicts a valuable tool. Concerning plastic design, Eurocode 3 requires only Class 1 cross‐sections and material grades up to S460, depicting conventional strength steels (CSS), to be used. High strength steels (HSS) with yield strengths up to 700 MPa are not considered appropriate for plastic design due to their lower ductility. However, the exclusion of HSS appears to be unnecessary in the light of recent test results. Experimental investigations on 20 homogeneous and hybrid high strength double symmetric I‐section beams have been conducted comprising various slenderness characteristics of flange and web and different span lengths. The results show that the rotation capacity value of R = 3, currently required by EC3 regulations, can actually be achieved by high strength steel beams depending on their cross‐sectional characteristics. Additionally, the experimental tests have been recalculated numerically. The material characteristics of the models have been defined by flow curves, which have firstly been calibrated on the basis of small‐scale tensile tests and furthermore slightly fitted to the full‐scale test results. Ductile material failure in terms of crack initiation and evolution is considered by incorporating a damage mechanics model. It can be shown that experimental and numerical results show very good accordance.</description><subject>high strength steel</subject><subject>plastic design</subject><subject>Rotation capacity</subject><issn>2509-7075</issn><issn>2509-7075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EElXpwD_wypD27Dh2M1ZV-ZAqwQCz5bjn1Ch1oth89N-TtAwsTPfeq_dOdw8htwzmDIAvLHZmzoSUF2TCCygzBaq4_KOvySzGdwDIOWNLzidEb7477P0BQzINNWFHw8dhMOzQ-fCJMfnaJN-GSNtA0x5p36aTQa3pjPXpSFtH977e05h6DHUaBWJDKzSHeEOunGkizn7rlLzdb17Xj9n2-eFpvdpmlg0HZ26pmDVCqMJVpZJMVmJnjMKq4i4HKUCyZVnuSpQWwHIlnVK5EMitza0SLp-Su_Ne27cx9uh0N3xl-qNmoEc4eoSjRzhDdnHOfvkGj_8H9XrzsjpN_ACWhmfi</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Bartsch, Helen</creator><creator>Pauli, Gesa</creator><creator>Eyben, Felix</creator><creator>Schaffrath, Simon</creator><creator>Feldmann, Markus</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202109</creationdate><title>Experimental and numerical investigations on the rotation capacity of high strength steel beams</title><author>Bartsch, Helen ; Pauli, Gesa ; Eyben, Felix ; Schaffrath, Simon ; Feldmann, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1146-f871ca4475fb97616b4daa7ebb2f3064061899d9e6c00c276f77344e2cc3c74f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>high strength steel</topic><topic>plastic design</topic><topic>Rotation capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartsch, Helen</creatorcontrib><creatorcontrib>Pauli, Gesa</creatorcontrib><creatorcontrib>Eyben, Felix</creatorcontrib><creatorcontrib>Schaffrath, Simon</creatorcontrib><creatorcontrib>Feldmann, Markus</creatorcontrib><collection>CrossRef</collection><jtitle>ce/papers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartsch, Helen</au><au>Pauli, Gesa</au><au>Eyben, Felix</au><au>Schaffrath, Simon</au><au>Feldmann, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and numerical investigations on the rotation capacity of high strength steel beams</atitle><jtitle>ce/papers</jtitle><date>2021-09</date><risdate>2021</risdate><volume>4</volume><issue>2-4</issue><spage>1630</spage><epage>1636</epage><pages>1630-1636</pages><issn>2509-7075</issn><eissn>2509-7075</eissn><abstract>In order to design efficient and highly utilised sections, the plastic/plastic design approach depicts a valuable tool. Concerning plastic design, Eurocode 3 requires only Class 1 cross‐sections and material grades up to S460, depicting conventional strength steels (CSS), to be used. High strength steels (HSS) with yield strengths up to 700 MPa are not considered appropriate for plastic design due to their lower ductility. However, the exclusion of HSS appears to be unnecessary in the light of recent test results. Experimental investigations on 20 homogeneous and hybrid high strength double symmetric I‐section beams have been conducted comprising various slenderness characteristics of flange and web and different span lengths. The results show that the rotation capacity value of R = 3, currently required by EC3 regulations, can actually be achieved by high strength steel beams depending on their cross‐sectional characteristics. Additionally, the experimental tests have been recalculated numerically. The material characteristics of the models have been defined by flow curves, which have firstly been calibrated on the basis of small‐scale tensile tests and furthermore slightly fitted to the full‐scale test results. Ductile material failure in terms of crack initiation and evolution is considered by incorporating a damage mechanics model. It can be shown that experimental and numerical results show very good accordance.</abstract><doi>10.1002/cepa.1466</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2509-7075
ispartof ce/papers, 2021-09, Vol.4 (2-4), p.1630-1636
issn 2509-7075
2509-7075
language eng
recordid cdi_crossref_primary_10_1002_cepa_1466
source Wiley Online Library Journals Frontfile Complete
subjects high strength steel
plastic design
Rotation capacity
title Experimental and numerical investigations on the rotation capacity of high strength steel beams
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A01%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20numerical%20investigations%20on%20the%20rotation%20capacity%20of%20high%20strength%20steel%20beams&rft.jtitle=ce/papers&rft.au=Bartsch,%20Helen&rft.date=2021-09&rft.volume=4&rft.issue=2-4&rft.spage=1630&rft.epage=1636&rft.pages=1630-1636&rft.issn=2509-7075&rft.eissn=2509-7075&rft_id=info:doi/10.1002/cepa.1466&rft_dat=%3Cwiley_cross%3ECEPA1466%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true