Comments on the power method
In a recent short communication, Miyashita et al. have commented on the weakness of the NIPALS algorithm (equivalently the power method) for calculating the eigenvalues out of order. They offer a diagnostic to ascertain when this may have occurred and suggested a modification to the NIPALS algorithm...
Gespeichert in:
Veröffentlicht in: | Journal of chemometrics 1990-07, Vol.4 (4), p.331-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 334 |
---|---|
container_issue | 4 |
container_start_page | 331 |
container_title | Journal of chemometrics |
container_volume | 4 |
creator | Seasholtz, Mary Beth Pell, Randy J. Gates, Kevin E. |
description | In a recent short communication, Miyashita et al. have commented on the weakness of the NIPALS algorithm (equivalently the power method) for calculating the eigenvalues out of order. They offer a diagnostic to ascertain when this may have occurred and suggested a modification to the NIPALS algorithm to avoid this situation. Further comments regarding the use of the power method and Miyashita's presentation of its weakness are warranted. The general inadequacies of methods for decomposing a matrix with degenerate eigenvalues and their relationship to the orthogonal design of experiments are discussed. |
doi_str_mv | 10.1002/cem.1180040407 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cem_1180040407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CEM1180040407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2687-23b23f96fd308cbc9e7b358c861561d1be0bee59d3c8ddc7e42cba4aa583e4523</originalsourceid><addsrcrecordid>eNqFjz1PwzAQhi0EEqWwMjFkYUw52_HXiKJSkAosfG2W41zUQNNUdqS2_55UQVRM6IYb7n3e00PIJYUJBWA3HpsJpRog60cdkREFY1LK9McxGYHWMjVc81NyFuMnQH_j2Yhc5W3T4KqLSbtKugUm63aDIWmwW7TlOTmp3DLixc8ek9e76Ut-n86fZw_57Tz1TGqVMl4wXhlZlRy0L7xBVXChvZZUSFrSAqFAFKbkXpelV5gxX7jMOaE5ZoLxMZkMvT60MQas7DrUjQs7S8Hu3WzvZg9uPXA9AGsXvVtWwa18HQ-U0UCB7XNmyG3qJe7-abX59PHPj3Rg69jh9pd14ctKxZWw708z-8bnWjAJVvFv9f1tKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comments on the power method</title><source>Access via Wiley Online Library</source><creator>Seasholtz, Mary Beth ; Pell, Randy J. ; Gates, Kevin E.</creator><creatorcontrib>Seasholtz, Mary Beth ; Pell, Randy J. ; Gates, Kevin E.</creatorcontrib><description>In a recent short communication, Miyashita et al. have commented on the weakness of the NIPALS algorithm (equivalently the power method) for calculating the eigenvalues out of order. They offer a diagnostic to ascertain when this may have occurred and suggested a modification to the NIPALS algorithm to avoid this situation. Further comments regarding the use of the power method and Miyashita's presentation of its weakness are warranted. The general inadequacies of methods for decomposing a matrix with degenerate eigenvalues and their relationship to the orthogonal design of experiments are discussed.</description><identifier>ISSN: 0886-9383</identifier><identifier>EISSN: 1099-128X</identifier><identifier>DOI: 10.1002/cem.1180040407</identifier><identifier>CODEN: JOCHEU</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Exact sciences and technology ; Experimental design ; Mathematics ; NIPALS algorithm ; Numerical analysis ; Numerical analysis. Scientific computation ; Numerical linear algebra ; Power method ; Sciences and techniques of general use ; Singular value decomposition</subject><ispartof>Journal of chemometrics, 1990-07, Vol.4 (4), p.331-334</ispartof><rights>Copyright © 1990 John Wiley & Sons, Ltd.</rights><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2687-23b23f96fd308cbc9e7b358c861561d1be0bee59d3c8ddc7e42cba4aa583e4523</citedby><cites>FETCH-LOGICAL-c2687-23b23f96fd308cbc9e7b358c861561d1be0bee59d3c8ddc7e42cba4aa583e4523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcem.1180040407$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcem.1180040407$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19801027$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seasholtz, Mary Beth</creatorcontrib><creatorcontrib>Pell, Randy J.</creatorcontrib><creatorcontrib>Gates, Kevin E.</creatorcontrib><title>Comments on the power method</title><title>Journal of chemometrics</title><addtitle>J. Chemometrics</addtitle><description>In a recent short communication, Miyashita et al. have commented on the weakness of the NIPALS algorithm (equivalently the power method) for calculating the eigenvalues out of order. They offer a diagnostic to ascertain when this may have occurred and suggested a modification to the NIPALS algorithm to avoid this situation. Further comments regarding the use of the power method and Miyashita's presentation of its weakness are warranted. The general inadequacies of methods for decomposing a matrix with degenerate eigenvalues and their relationship to the orthogonal design of experiments are discussed.</description><subject>Exact sciences and technology</subject><subject>Experimental design</subject><subject>Mathematics</subject><subject>NIPALS algorithm</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Numerical linear algebra</subject><subject>Power method</subject><subject>Sciences and techniques of general use</subject><subject>Singular value decomposition</subject><issn>0886-9383</issn><issn>1099-128X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAQhi0EEqWwMjFkYUw52_HXiKJSkAosfG2W41zUQNNUdqS2_55UQVRM6IYb7n3e00PIJYUJBWA3HpsJpRog60cdkREFY1LK9McxGYHWMjVc81NyFuMnQH_j2Yhc5W3T4KqLSbtKugUm63aDIWmwW7TlOTmp3DLixc8ek9e76Ut-n86fZw_57Tz1TGqVMl4wXhlZlRy0L7xBVXChvZZUSFrSAqFAFKbkXpelV5gxX7jMOaE5ZoLxMZkMvT60MQas7DrUjQs7S8Hu3WzvZg9uPXA9AGsXvVtWwa18HQ-U0UCB7XNmyG3qJe7-abX59PHPj3Rg69jh9pd14ctKxZWw708z-8bnWjAJVvFv9f1tKA</recordid><startdate>199007</startdate><enddate>199007</enddate><creator>Seasholtz, Mary Beth</creator><creator>Pell, Randy J.</creator><creator>Gates, Kevin E.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199007</creationdate><title>Comments on the power method</title><author>Seasholtz, Mary Beth ; Pell, Randy J. ; Gates, Kevin E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2687-23b23f96fd308cbc9e7b358c861561d1be0bee59d3c8ddc7e42cba4aa583e4523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Exact sciences and technology</topic><topic>Experimental design</topic><topic>Mathematics</topic><topic>NIPALS algorithm</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Numerical linear algebra</topic><topic>Power method</topic><topic>Sciences and techniques of general use</topic><topic>Singular value decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seasholtz, Mary Beth</creatorcontrib><creatorcontrib>Pell, Randy J.</creatorcontrib><creatorcontrib>Gates, Kevin E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of chemometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seasholtz, Mary Beth</au><au>Pell, Randy J.</au><au>Gates, Kevin E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comments on the power method</atitle><jtitle>Journal of chemometrics</jtitle><addtitle>J. Chemometrics</addtitle><date>1990-07</date><risdate>1990</risdate><volume>4</volume><issue>4</issue><spage>331</spage><epage>334</epage><pages>331-334</pages><issn>0886-9383</issn><eissn>1099-128X</eissn><coden>JOCHEU</coden><abstract>In a recent short communication, Miyashita et al. have commented on the weakness of the NIPALS algorithm (equivalently the power method) for calculating the eigenvalues out of order. They offer a diagnostic to ascertain when this may have occurred and suggested a modification to the NIPALS algorithm to avoid this situation. Further comments regarding the use of the power method and Miyashita's presentation of its weakness are warranted. The general inadequacies of methods for decomposing a matrix with degenerate eigenvalues and their relationship to the orthogonal design of experiments are discussed.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/cem.1180040407</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0886-9383 |
ispartof | Journal of chemometrics, 1990-07, Vol.4 (4), p.331-334 |
issn | 0886-9383 1099-128X |
language | eng |
recordid | cdi_crossref_primary_10_1002_cem_1180040407 |
source | Access via Wiley Online Library |
subjects | Exact sciences and technology Experimental design Mathematics NIPALS algorithm Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Power method Sciences and techniques of general use Singular value decomposition |
title | Comments on the power method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A12%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comments%20on%20the%20power%20method&rft.jtitle=Journal%20of%20chemometrics&rft.au=Seasholtz,%20Mary%20Beth&rft.date=1990-07&rft.volume=4&rft.issue=4&rft.spage=331&rft.epage=334&rft.pages=331-334&rft.issn=0886-9383&rft.eissn=1099-128X&rft.coden=JOCHEU&rft_id=info:doi/10.1002/cem.1180040407&rft_dat=%3Cwiley_cross%3ECEM1180040407%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |