Drying Kinetics Prediction of Solid Waste Using Semi-Empirical and Artificial Neural Network Models

The drying process of organic solid waste is investigated, based on an experimental study involving its drying kinetics. The experiments were conducted in a thin‐layer fixed‐bed dryer under various operational conditions. The problem of selecting the best fit for solid waste moisture content as a fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering & technology 2013-07, Vol.36 (7), p.1193-1201
Hauptverfasser: Perazzini, H., Freire, F. B., Freire, J. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1201
container_issue 7
container_start_page 1193
container_title Chemical engineering & technology
container_volume 36
creator Perazzini, H.
Freire, F. B.
Freire, J. T.
description The drying process of organic solid waste is investigated, based on an experimental study involving its drying kinetics. The experiments were conducted in a thin‐layer fixed‐bed dryer under various operational conditions. The problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well, using artificial neural network (ANN) models and four well‐known drying kinetics correlations commonly applied to biological materials. According to the statistical analysis employed, the simulations showed good results for the ANN, and the Overhults model provided optimum agreement with experimental data among all other models evaluated. Empirical correlations between the Overhults model parameters and the drying operational conditions using nonlinear regression techniques were determined. The kinetics of the drying process of solid citrus wastes in a thin‐layer fixed‐bed dryer under different operational conditions is investigated. By means of artificial neural networks and four well‐known drying kinetics correlations, the problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well.
doi_str_mv 10.1002/ceat.201200593
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ceat_201200593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_FJSCM8W1_Z</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3643-501610e539a853d29193c2dcb0dfa5591453f40bb0d99b37c86d1c832e939b973</originalsourceid><addsrcrecordid>eNqFkE9PwjAchhujiYhePfcLDH9t1209EgT8A2gChMRL07WdqYyNtDPIt3eIId48vXmT93kPD0K3BHoEgN5pq5oeBUIBuGBnqEM4JVFMKD9HHRAMopST5BJdhfABAKQtHaTv_d5V7_jZVbZxOuBXb43TjasrXBd4XpfO4JUKjcXLcBjO7cZFw83WeadViVVlcN83rnDatXVmP_1PNLvar_G0NrYM1-iiUGWwN7_ZRcvRcDF4iCYv48dBfxJplsQs4kASApYzoTLODBVEME2NzsEUinNBYs6KGPK2C5GzVGeJITpj1AomcpGyLuodf7WvQ_C2kFvvNsrvJQF5UCQPiuRJUQuII7Bzpd3_s5aDYX_xl42OrGvdfJ1Y5dcySVnK5Wo2lqOn-WCarYh8Y9-vV3nT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Drying Kinetics Prediction of Solid Waste Using Semi-Empirical and Artificial Neural Network Models</title><source>Wiley Online Library All Journals</source><creator>Perazzini, H. ; Freire, F. B. ; Freire, J. T.</creator><creatorcontrib>Perazzini, H. ; Freire, F. B. ; Freire, J. T.</creatorcontrib><description>The drying process of organic solid waste is investigated, based on an experimental study involving its drying kinetics. The experiments were conducted in a thin‐layer fixed‐bed dryer under various operational conditions. The problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well, using artificial neural network (ANN) models and four well‐known drying kinetics correlations commonly applied to biological materials. According to the statistical analysis employed, the simulations showed good results for the ANN, and the Overhults model provided optimum agreement with experimental data among all other models evaluated. Empirical correlations between the Overhults model parameters and the drying operational conditions using nonlinear regression techniques were determined. The kinetics of the drying process of solid citrus wastes in a thin‐layer fixed‐bed dryer under different operational conditions is investigated. By means of artificial neural networks and four well‐known drying kinetics correlations, the problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201200593</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Artificial neural networks ; Drying kinetics ; Fixed-bed dryer ; Thin-layer drying</subject><ispartof>Chemical engineering &amp; technology, 2013-07, Vol.36 (7), p.1193-1201</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3643-501610e539a853d29193c2dcb0dfa5591453f40bb0d99b37c86d1c832e939b973</citedby><cites>FETCH-LOGICAL-c3643-501610e539a853d29193c2dcb0dfa5591453f40bb0d99b37c86d1c832e939b973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fceat.201200593$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fceat.201200593$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Perazzini, H.</creatorcontrib><creatorcontrib>Freire, F. B.</creatorcontrib><creatorcontrib>Freire, J. T.</creatorcontrib><title>Drying Kinetics Prediction of Solid Waste Using Semi-Empirical and Artificial Neural Network Models</title><title>Chemical engineering &amp; technology</title><addtitle>Chem. Eng. Technol</addtitle><description>The drying process of organic solid waste is investigated, based on an experimental study involving its drying kinetics. The experiments were conducted in a thin‐layer fixed‐bed dryer under various operational conditions. The problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well, using artificial neural network (ANN) models and four well‐known drying kinetics correlations commonly applied to biological materials. According to the statistical analysis employed, the simulations showed good results for the ANN, and the Overhults model provided optimum agreement with experimental data among all other models evaluated. Empirical correlations between the Overhults model parameters and the drying operational conditions using nonlinear regression techniques were determined. The kinetics of the drying process of solid citrus wastes in a thin‐layer fixed‐bed dryer under different operational conditions is investigated. By means of artificial neural networks and four well‐known drying kinetics correlations, the problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well.</description><subject>Artificial neural networks</subject><subject>Drying kinetics</subject><subject>Fixed-bed dryer</subject><subject>Thin-layer drying</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwjAchhujiYhePfcLDH9t1209EgT8A2gChMRL07WdqYyNtDPIt3eIId48vXmT93kPD0K3BHoEgN5pq5oeBUIBuGBnqEM4JVFMKD9HHRAMopST5BJdhfABAKQtHaTv_d5V7_jZVbZxOuBXb43TjasrXBd4XpfO4JUKjcXLcBjO7cZFw83WeadViVVlcN83rnDatXVmP_1PNLvar_G0NrYM1-iiUGWwN7_ZRcvRcDF4iCYv48dBfxJplsQs4kASApYzoTLODBVEME2NzsEUinNBYs6KGPK2C5GzVGeJITpj1AomcpGyLuodf7WvQ_C2kFvvNsrvJQF5UCQPiuRJUQuII7Bzpd3_s5aDYX_xl42OrGvdfJ1Y5dcySVnK5Wo2lqOn-WCarYh8Y9-vV3nT</recordid><startdate>201307</startdate><enddate>201307</enddate><creator>Perazzini, H.</creator><creator>Freire, F. B.</creator><creator>Freire, J. T.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201307</creationdate><title>Drying Kinetics Prediction of Solid Waste Using Semi-Empirical and Artificial Neural Network Models</title><author>Perazzini, H. ; Freire, F. B. ; Freire, J. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3643-501610e539a853d29193c2dcb0dfa5591453f40bb0d99b37c86d1c832e939b973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Drying kinetics</topic><topic>Fixed-bed dryer</topic><topic>Thin-layer drying</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perazzini, H.</creatorcontrib><creatorcontrib>Freire, F. B.</creatorcontrib><creatorcontrib>Freire, J. T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perazzini, H.</au><au>Freire, F. B.</au><au>Freire, J. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Drying Kinetics Prediction of Solid Waste Using Semi-Empirical and Artificial Neural Network Models</atitle><jtitle>Chemical engineering &amp; technology</jtitle><addtitle>Chem. Eng. Technol</addtitle><date>2013-07</date><risdate>2013</risdate><volume>36</volume><issue>7</issue><spage>1193</spage><epage>1201</epage><pages>1193-1201</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>The drying process of organic solid waste is investigated, based on an experimental study involving its drying kinetics. The experiments were conducted in a thin‐layer fixed‐bed dryer under various operational conditions. The problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well, using artificial neural network (ANN) models and four well‐known drying kinetics correlations commonly applied to biological materials. According to the statistical analysis employed, the simulations showed good results for the ANN, and the Overhults model provided optimum agreement with experimental data among all other models evaluated. Empirical correlations between the Overhults model parameters and the drying operational conditions using nonlinear regression techniques were determined. The kinetics of the drying process of solid citrus wastes in a thin‐layer fixed‐bed dryer under different operational conditions is investigated. By means of artificial neural networks and four well‐known drying kinetics correlations, the problem of selecting the best fit for solid waste moisture content as a function of time is addressed as well.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ceat.201200593</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2013-07, Vol.36 (7), p.1193-1201
issn 0930-7516
1521-4125
language eng
recordid cdi_crossref_primary_10_1002_ceat_201200593
source Wiley Online Library All Journals
subjects Artificial neural networks
Drying kinetics
Fixed-bed dryer
Thin-layer drying
title Drying Kinetics Prediction of Solid Waste Using Semi-Empirical and Artificial Neural Network Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T09%3A09%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Drying%20Kinetics%20Prediction%20of%20Solid%20Waste%20Using%20Semi-Empirical%20and%20Artificial%20Neural%20Network%20Models&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Perazzini,%20H.&rft.date=2013-07&rft.volume=36&rft.issue=7&rft.spage=1193&rft.epage=1201&rft.pages=1193-1201&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201200593&rft_dat=%3Cistex_cross%3Eark_67375_WNG_FJSCM8W1_Z%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true