Data‐driven Design of Enhanced In‐based Catalyst for CO 2 to Methanol Reaction

The environmental impact of unsustainable CO 2 emissions calls for immediate action. One of the main methods for large‐scale reduction of CO 2 emissions is conversion of carbon dioxide to valuable feedstocks like energy carriers or chemicals. Realization of this goal requires catalysts showing high‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemCatChem 2023-08, Vol.15 (16)
Hauptverfasser: Khatamirad, Mohammad, Fako, Edvin, De, Sandip, Müller, Matthias, Boscagli, Chiara, Baumgarten, Robert, Ingale, Piyush, d'Alnoncourt, Raoul Naumann, Rosowski, Frank, Schunk, Stephan Andreas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title ChemCatChem
container_volume 15
creator Khatamirad, Mohammad
Fako, Edvin
De, Sandip
Müller, Matthias
Boscagli, Chiara
Baumgarten, Robert
Ingale, Piyush
d'Alnoncourt, Raoul Naumann
Rosowski, Frank
Schunk, Stephan Andreas
description The environmental impact of unsustainable CO 2 emissions calls for immediate action. One of the main methods for large‐scale reduction of CO 2 emissions is conversion of carbon dioxide to valuable feedstocks like energy carriers or chemicals. Realization of this goal requires catalysts showing high‐performance characteristics under the relevant industrial conditions. In recent years, In 2 O 3 ‐based catalysts have been discussed as target materials for conversion of CO 2 to methanol in the presence of hydrogen. Optimization of this catalytic system via conventional routes requires massive resources in terms of extensive testing, synthesis, and characterization. In our study, we take an alternative approach and exploit high‐throughput computation to create a database for oxygen vacancy formation energy and explore a large number of candidates, which motivates the selection of a subset of materials for the synthesis of bulk and supported catalysts, to be tested in hydrogenation of CO 2 to methanol. The method shows the impact, as results show improved performance for selected candidates, compared to the reference In 2 O 3 ‐system. This confirms the potential of the selected descriptors as criteria for a new way of targeted design of alternative catalysts.
doi_str_mv 10.1002/cctc.202300570
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cctc_202300570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_cctc_202300570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c840-e19697d8e0bb18a0a984be35c77b35adf6dfc8b8a1af126d59f69ba65ad68743</originalsourceid><addsrcrecordid>eNo9kM1KAzEUhYMoWKtb13mBGW8mM_lZyrRqoVKo7oebTKIjNZFJELrzEXxGn8QpSlfnwPk4i4-QawYlA6hurM22rKDiAI2EEzJjSsiCK61Pj13BOblI6Q1AaC6bGdkuMOPP13c_Dp8u0IVLw0ug0dNleMVgXU9XYZoNpqm2E7vbp0x9HGm7oRXNkT66PJFxR7cObR5iuCRnHnfJXf3nnDzdLZ_bh2K9uV-1t-vCqhoKx7TQslcOjGEKAbWqjeONldLwBnsvem-VUcjQs0r0jfZCGxTTJJSs-ZyUf692jCmNzncf4_CO475j0B18dAcf3dEH_wUrhVV7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Data‐driven Design of Enhanced In‐based Catalyst for CO 2 to Methanol Reaction</title><source>Wiley Journals</source><creator>Khatamirad, Mohammad ; Fako, Edvin ; De, Sandip ; Müller, Matthias ; Boscagli, Chiara ; Baumgarten, Robert ; Ingale, Piyush ; d'Alnoncourt, Raoul Naumann ; Rosowski, Frank ; Schunk, Stephan Andreas</creator><creatorcontrib>Khatamirad, Mohammad ; Fako, Edvin ; De, Sandip ; Müller, Matthias ; Boscagli, Chiara ; Baumgarten, Robert ; Ingale, Piyush ; d'Alnoncourt, Raoul Naumann ; Rosowski, Frank ; Schunk, Stephan Andreas</creatorcontrib><description>The environmental impact of unsustainable CO 2 emissions calls for immediate action. One of the main methods for large‐scale reduction of CO 2 emissions is conversion of carbon dioxide to valuable feedstocks like energy carriers or chemicals. Realization of this goal requires catalysts showing high‐performance characteristics under the relevant industrial conditions. In recent years, In 2 O 3 ‐based catalysts have been discussed as target materials for conversion of CO 2 to methanol in the presence of hydrogen. Optimization of this catalytic system via conventional routes requires massive resources in terms of extensive testing, synthesis, and characterization. In our study, we take an alternative approach and exploit high‐throughput computation to create a database for oxygen vacancy formation energy and explore a large number of candidates, which motivates the selection of a subset of materials for the synthesis of bulk and supported catalysts, to be tested in hydrogenation of CO 2 to methanol. The method shows the impact, as results show improved performance for selected candidates, compared to the reference In 2 O 3 ‐system. This confirms the potential of the selected descriptors as criteria for a new way of targeted design of alternative catalysts.</description><identifier>ISSN: 1867-3880</identifier><identifier>EISSN: 1867-3899</identifier><identifier>DOI: 10.1002/cctc.202300570</identifier><language>eng</language><ispartof>ChemCatChem, 2023-08, Vol.15 (16)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c840-e19697d8e0bb18a0a984be35c77b35adf6dfc8b8a1af126d59f69ba65ad68743</citedby><cites>FETCH-LOGICAL-c840-e19697d8e0bb18a0a984be35c77b35adf6dfc8b8a1af126d59f69ba65ad68743</cites><orcidid>0000-0002-6723-1650</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Khatamirad, Mohammad</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>De, Sandip</creatorcontrib><creatorcontrib>Müller, Matthias</creatorcontrib><creatorcontrib>Boscagli, Chiara</creatorcontrib><creatorcontrib>Baumgarten, Robert</creatorcontrib><creatorcontrib>Ingale, Piyush</creatorcontrib><creatorcontrib>d'Alnoncourt, Raoul Naumann</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>Schunk, Stephan Andreas</creatorcontrib><title>Data‐driven Design of Enhanced In‐based Catalyst for CO 2 to Methanol Reaction</title><title>ChemCatChem</title><description>The environmental impact of unsustainable CO 2 emissions calls for immediate action. One of the main methods for large‐scale reduction of CO 2 emissions is conversion of carbon dioxide to valuable feedstocks like energy carriers or chemicals. Realization of this goal requires catalysts showing high‐performance characteristics under the relevant industrial conditions. In recent years, In 2 O 3 ‐based catalysts have been discussed as target materials for conversion of CO 2 to methanol in the presence of hydrogen. Optimization of this catalytic system via conventional routes requires massive resources in terms of extensive testing, synthesis, and characterization. In our study, we take an alternative approach and exploit high‐throughput computation to create a database for oxygen vacancy formation energy and explore a large number of candidates, which motivates the selection of a subset of materials for the synthesis of bulk and supported catalysts, to be tested in hydrogenation of CO 2 to methanol. The method shows the impact, as results show improved performance for selected candidates, compared to the reference In 2 O 3 ‐system. This confirms the potential of the selected descriptors as criteria for a new way of targeted design of alternative catalysts.</description><issn>1867-3880</issn><issn>1867-3899</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEUhYMoWKtb13mBGW8mM_lZyrRqoVKo7oebTKIjNZFJELrzEXxGn8QpSlfnwPk4i4-QawYlA6hurM22rKDiAI2EEzJjSsiCK61Pj13BOblI6Q1AaC6bGdkuMOPP13c_Dp8u0IVLw0ug0dNleMVgXU9XYZoNpqm2E7vbp0x9HGm7oRXNkT66PJFxR7cObR5iuCRnHnfJXf3nnDzdLZ_bh2K9uV-1t-vCqhoKx7TQslcOjGEKAbWqjeONldLwBnsvem-VUcjQs0r0jfZCGxTTJJSs-ZyUf692jCmNzncf4_CO475j0B18dAcf3dEH_wUrhVV7</recordid><startdate>20230821</startdate><enddate>20230821</enddate><creator>Khatamirad, Mohammad</creator><creator>Fako, Edvin</creator><creator>De, Sandip</creator><creator>Müller, Matthias</creator><creator>Boscagli, Chiara</creator><creator>Baumgarten, Robert</creator><creator>Ingale, Piyush</creator><creator>d'Alnoncourt, Raoul Naumann</creator><creator>Rosowski, Frank</creator><creator>Schunk, Stephan Andreas</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6723-1650</orcidid></search><sort><creationdate>20230821</creationdate><title>Data‐driven Design of Enhanced In‐based Catalyst for CO 2 to Methanol Reaction</title><author>Khatamirad, Mohammad ; Fako, Edvin ; De, Sandip ; Müller, Matthias ; Boscagli, Chiara ; Baumgarten, Robert ; Ingale, Piyush ; d'Alnoncourt, Raoul Naumann ; Rosowski, Frank ; Schunk, Stephan Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c840-e19697d8e0bb18a0a984be35c77b35adf6dfc8b8a1af126d59f69ba65ad68743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khatamirad, Mohammad</creatorcontrib><creatorcontrib>Fako, Edvin</creatorcontrib><creatorcontrib>De, Sandip</creatorcontrib><creatorcontrib>Müller, Matthias</creatorcontrib><creatorcontrib>Boscagli, Chiara</creatorcontrib><creatorcontrib>Baumgarten, Robert</creatorcontrib><creatorcontrib>Ingale, Piyush</creatorcontrib><creatorcontrib>d'Alnoncourt, Raoul Naumann</creatorcontrib><creatorcontrib>Rosowski, Frank</creatorcontrib><creatorcontrib>Schunk, Stephan Andreas</creatorcontrib><collection>CrossRef</collection><jtitle>ChemCatChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khatamirad, Mohammad</au><au>Fako, Edvin</au><au>De, Sandip</au><au>Müller, Matthias</au><au>Boscagli, Chiara</au><au>Baumgarten, Robert</au><au>Ingale, Piyush</au><au>d'Alnoncourt, Raoul Naumann</au><au>Rosowski, Frank</au><au>Schunk, Stephan Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data‐driven Design of Enhanced In‐based Catalyst for CO 2 to Methanol Reaction</atitle><jtitle>ChemCatChem</jtitle><date>2023-08-21</date><risdate>2023</risdate><volume>15</volume><issue>16</issue><issn>1867-3880</issn><eissn>1867-3899</eissn><abstract>The environmental impact of unsustainable CO 2 emissions calls for immediate action. One of the main methods for large‐scale reduction of CO 2 emissions is conversion of carbon dioxide to valuable feedstocks like energy carriers or chemicals. Realization of this goal requires catalysts showing high‐performance characteristics under the relevant industrial conditions. In recent years, In 2 O 3 ‐based catalysts have been discussed as target materials for conversion of CO 2 to methanol in the presence of hydrogen. Optimization of this catalytic system via conventional routes requires massive resources in terms of extensive testing, synthesis, and characterization. In our study, we take an alternative approach and exploit high‐throughput computation to create a database for oxygen vacancy formation energy and explore a large number of candidates, which motivates the selection of a subset of materials for the synthesis of bulk and supported catalysts, to be tested in hydrogenation of CO 2 to methanol. The method shows the impact, as results show improved performance for selected candidates, compared to the reference In 2 O 3 ‐system. This confirms the potential of the selected descriptors as criteria for a new way of targeted design of alternative catalysts.</abstract><doi>10.1002/cctc.202300570</doi><orcidid>https://orcid.org/0000-0002-6723-1650</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1867-3880
ispartof ChemCatChem, 2023-08, Vol.15 (16)
issn 1867-3880
1867-3899
language eng
recordid cdi_crossref_primary_10_1002_cctc_202300570
source Wiley Journals
title Data‐driven Design of Enhanced In‐based Catalyst for CO 2 to Methanol Reaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T12%3A15%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data%E2%80%90driven%20Design%20of%20Enhanced%20In%E2%80%90based%20Catalyst%20for%20CO%202%20to%20Methanol%20Reaction&rft.jtitle=ChemCatChem&rft.au=Khatamirad,%20Mohammad&rft.date=2023-08-21&rft.volume=15&rft.issue=16&rft.issn=1867-3880&rft.eissn=1867-3899&rft_id=info:doi/10.1002/cctc.202300570&rft_dat=%3Ccrossref%3E10_1002_cctc_202300570%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true