Cover Feature: Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavin‐Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics (ChemBioChem 5/2020)
The cover feature picture shows the biosynthetic pathway of actinorhodin (ACT), a polycyclic polyketide antibiotic pigmented with sky‐blue. The ACT monomer is derived from eight “chicks” of malonyl‐CoA by a series of tailoring steps including key stepwise dihydroxylations (black arrows) catalyzed by...
Gespeichert in:
Veröffentlicht in: | Chembiochem : a European journal of chemical biology 2020-03, Vol.21 (5), p.574-574 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 574 |
---|---|
container_issue | 5 |
container_start_page | 574 |
container_title | Chembiochem : a European journal of chemical biology |
container_volume | 21 |
creator | Hashimoto, Makoto Taguchi, Takaaki Ishikawa, Kazuki Mori, Ryuichiro Hotta, Akari Watari, Susumu Katakawa, Kazuaki Kumamoto, Takuya Okamoto, Susumu Ichinose, Koji |
description | The cover feature picture shows the biosynthetic pathway of actinorhodin (ACT), a polycyclic polyketide antibiotic pigmented with sky‐blue. The ACT monomer is derived from eight “chicks” of malonyl‐CoA by a series of tailoring steps including key stepwise dihydroxylations (black arrows) catalyzed by ActVA‐5 (green), the oxygenase component of the ActVA‐5/ActVB hydroxylase system. ActVA‐5 products can be autoxidized, but ActVB flavin reductase (pink), which supplies ActVA‐5 with a reduced cofactor, FMNH2, reduces quinone‐form shunt products to hydroquinone intermediates (red arrows). The tricyclic product is dimerized to generate the product “bluebird”, ACT. More information can be found in the communication by K. Ichinose et al. on page 623 in Issue 5, 2020 (DOI: 10.1002/cbic.201900490). |
doi_str_mv | 10.1002/cbic.202000077 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_cbic_202000077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>CBIC202000077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1297-726a911d9e912e1344fbca838d3dec442aa57e1de639e31d039747c35d6f3e963</originalsourceid><addsrcrecordid>eNqFUc1KAzEQXkTB36vnOeqhdZNsN6a3ulottAhiz0uazLaRbSLJWl1PPoJvKPgkplQUvDiXGWa-H5gvSY5J2iVpSs_UzKguTWkai_OtZI9kTHR4ztj295xRyneT_RAeIkTkjOwlH4VboYchyubJYx-mdoWmNnYO988OCmcDqqfGrBBuWu3dS1vLxsRtHyaoFtKasAzgKhh4t4wX9QcGhWxk3b6ihlkLw1qujP18e7_ER7QabQMTZ12Ez9HKgAEq56FZIFwYF1obp2A28qox1vmF08aCtBruMDpE1YFtzMy46BzgpFjgMjLXDXpn61ecHiY7lawDHn33g2Q6vLovbjrj2-tRMRh3FKGCdzjNpSBECxSEImFZVs2UPGfnmmlUWUal7HEkGnMmkBGdMsEzrlhP5xXD-MqDpLvRVd6F4LEqH71ZSt-WJC3X8ZTreMqfeCJBbAjPpsb2H3RZXIyKX-4XK4eaTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cover Feature: Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavin‐Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics (ChemBioChem 5/2020)</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Hashimoto, Makoto ; Taguchi, Takaaki ; Ishikawa, Kazuki ; Mori, Ryuichiro ; Hotta, Akari ; Watari, Susumu ; Katakawa, Kazuaki ; Kumamoto, Takuya ; Okamoto, Susumu ; Ichinose, Koji</creator><creatorcontrib>Hashimoto, Makoto ; Taguchi, Takaaki ; Ishikawa, Kazuki ; Mori, Ryuichiro ; Hotta, Akari ; Watari, Susumu ; Katakawa, Kazuaki ; Kumamoto, Takuya ; Okamoto, Susumu ; Ichinose, Koji</creatorcontrib><description>The cover feature picture shows the biosynthetic pathway of actinorhodin (ACT), a polycyclic polyketide antibiotic pigmented with sky‐blue. The ACT monomer is derived from eight “chicks” of malonyl‐CoA by a series of tailoring steps including key stepwise dihydroxylations (black arrows) catalyzed by ActVA‐5 (green), the oxygenase component of the ActVA‐5/ActVB hydroxylase system. ActVA‐5 products can be autoxidized, but ActVB flavin reductase (pink), which supplies ActVA‐5 with a reduced cofactor, FMNH2, reduces quinone‐form shunt products to hydroquinone intermediates (red arrows). The tricyclic product is dimerized to generate the product “bluebird”, ACT. More information can be found in the communication by K. Ichinose et al. on page 623 in Issue 5, 2020 (DOI: 10.1002/cbic.201900490).</description><identifier>ISSN: 1439-4227</identifier><identifier>EISSN: 1439-7633</identifier><identifier>DOI: 10.1002/cbic.202000077</identifier><language>eng</language><subject>actinorhodin ; aromatic hydroxylation ; biosynthesis ; flavin-dependent monooxygenases ; reaction mechanisms</subject><ispartof>Chembiochem : a European journal of chemical biology, 2020-03, Vol.21 (5), p.574-574</ispartof><rights>2020 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1973-1551 ; 0000-0002-8716-4985 ; 0000-0003-3734-4336 ; 0000-0001-9529-0407 ; 0000-0001-5225-2689 ; 0000-0002-9972-6164 ; 0000-0002-5002-3775</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcbic.202000077$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcbic.202000077$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27928,27929,45578,45579</link.rule.ids></links><search><creatorcontrib>Hashimoto, Makoto</creatorcontrib><creatorcontrib>Taguchi, Takaaki</creatorcontrib><creatorcontrib>Ishikawa, Kazuki</creatorcontrib><creatorcontrib>Mori, Ryuichiro</creatorcontrib><creatorcontrib>Hotta, Akari</creatorcontrib><creatorcontrib>Watari, Susumu</creatorcontrib><creatorcontrib>Katakawa, Kazuaki</creatorcontrib><creatorcontrib>Kumamoto, Takuya</creatorcontrib><creatorcontrib>Okamoto, Susumu</creatorcontrib><creatorcontrib>Ichinose, Koji</creatorcontrib><title>Cover Feature: Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavin‐Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics (ChemBioChem 5/2020)</title><title>Chembiochem : a European journal of chemical biology</title><description>The cover feature picture shows the biosynthetic pathway of actinorhodin (ACT), a polycyclic polyketide antibiotic pigmented with sky‐blue. The ACT monomer is derived from eight “chicks” of malonyl‐CoA by a series of tailoring steps including key stepwise dihydroxylations (black arrows) catalyzed by ActVA‐5 (green), the oxygenase component of the ActVA‐5/ActVB hydroxylase system. ActVA‐5 products can be autoxidized, but ActVB flavin reductase (pink), which supplies ActVA‐5 with a reduced cofactor, FMNH2, reduces quinone‐form shunt products to hydroquinone intermediates (red arrows). The tricyclic product is dimerized to generate the product “bluebird”, ACT. More information can be found in the communication by K. Ichinose et al. on page 623 in Issue 5, 2020 (DOI: 10.1002/cbic.201900490).</description><subject>actinorhodin</subject><subject>aromatic hydroxylation</subject><subject>biosynthesis</subject><subject>flavin-dependent monooxygenases</subject><subject>reaction mechanisms</subject><issn>1439-4227</issn><issn>1439-7633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFUc1KAzEQXkTB36vnOeqhdZNsN6a3ulottAhiz0uazLaRbSLJWl1PPoJvKPgkplQUvDiXGWa-H5gvSY5J2iVpSs_UzKguTWkai_OtZI9kTHR4ztj295xRyneT_RAeIkTkjOwlH4VboYchyubJYx-mdoWmNnYO988OCmcDqqfGrBBuWu3dS1vLxsRtHyaoFtKasAzgKhh4t4wX9QcGhWxk3b6ihlkLw1qujP18e7_ER7QabQMTZ12Ez9HKgAEq56FZIFwYF1obp2A28qox1vmF08aCtBruMDpE1YFtzMy46BzgpFjgMjLXDXpn61ecHiY7lawDHn33g2Q6vLovbjrj2-tRMRh3FKGCdzjNpSBECxSEImFZVs2UPGfnmmlUWUal7HEkGnMmkBGdMsEzrlhP5xXD-MqDpLvRVd6F4LEqH71ZSt-WJC3X8ZTreMqfeCJBbAjPpsb2H3RZXIyKX-4XK4eaTg</recordid><startdate>20200302</startdate><enddate>20200302</enddate><creator>Hashimoto, Makoto</creator><creator>Taguchi, Takaaki</creator><creator>Ishikawa, Kazuki</creator><creator>Mori, Ryuichiro</creator><creator>Hotta, Akari</creator><creator>Watari, Susumu</creator><creator>Katakawa, Kazuaki</creator><creator>Kumamoto, Takuya</creator><creator>Okamoto, Susumu</creator><creator>Ichinose, Koji</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1973-1551</orcidid><orcidid>https://orcid.org/0000-0002-8716-4985</orcidid><orcidid>https://orcid.org/0000-0003-3734-4336</orcidid><orcidid>https://orcid.org/0000-0001-9529-0407</orcidid><orcidid>https://orcid.org/0000-0001-5225-2689</orcidid><orcidid>https://orcid.org/0000-0002-9972-6164</orcidid><orcidid>https://orcid.org/0000-0002-5002-3775</orcidid></search><sort><creationdate>20200302</creationdate><title>Cover Feature: Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavin‐Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics (ChemBioChem 5/2020)</title><author>Hashimoto, Makoto ; Taguchi, Takaaki ; Ishikawa, Kazuki ; Mori, Ryuichiro ; Hotta, Akari ; Watari, Susumu ; Katakawa, Kazuaki ; Kumamoto, Takuya ; Okamoto, Susumu ; Ichinose, Koji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1297-726a911d9e912e1344fbca838d3dec442aa57e1de639e31d039747c35d6f3e963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>actinorhodin</topic><topic>aromatic hydroxylation</topic><topic>biosynthesis</topic><topic>flavin-dependent monooxygenases</topic><topic>reaction mechanisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hashimoto, Makoto</creatorcontrib><creatorcontrib>Taguchi, Takaaki</creatorcontrib><creatorcontrib>Ishikawa, Kazuki</creatorcontrib><creatorcontrib>Mori, Ryuichiro</creatorcontrib><creatorcontrib>Hotta, Akari</creatorcontrib><creatorcontrib>Watari, Susumu</creatorcontrib><creatorcontrib>Katakawa, Kazuaki</creatorcontrib><creatorcontrib>Kumamoto, Takuya</creatorcontrib><creatorcontrib>Okamoto, Susumu</creatorcontrib><creatorcontrib>Ichinose, Koji</creatorcontrib><collection>CrossRef</collection><jtitle>Chembiochem : a European journal of chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hashimoto, Makoto</au><au>Taguchi, Takaaki</au><au>Ishikawa, Kazuki</au><au>Mori, Ryuichiro</au><au>Hotta, Akari</au><au>Watari, Susumu</au><au>Katakawa, Kazuaki</au><au>Kumamoto, Takuya</au><au>Okamoto, Susumu</au><au>Ichinose, Koji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cover Feature: Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavin‐Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics (ChemBioChem 5/2020)</atitle><jtitle>Chembiochem : a European journal of chemical biology</jtitle><date>2020-03-02</date><risdate>2020</risdate><volume>21</volume><issue>5</issue><spage>574</spage><epage>574</epage><pages>574-574</pages><issn>1439-4227</issn><eissn>1439-7633</eissn><abstract>The cover feature picture shows the biosynthetic pathway of actinorhodin (ACT), a polycyclic polyketide antibiotic pigmented with sky‐blue. The ACT monomer is derived from eight “chicks” of malonyl‐CoA by a series of tailoring steps including key stepwise dihydroxylations (black arrows) catalyzed by ActVA‐5 (green), the oxygenase component of the ActVA‐5/ActVB hydroxylase system. ActVA‐5 products can be autoxidized, but ActVB flavin reductase (pink), which supplies ActVA‐5 with a reduced cofactor, FMNH2, reduces quinone‐form shunt products to hydroquinone intermediates (red arrows). The tricyclic product is dimerized to generate the product “bluebird”, ACT. More information can be found in the communication by K. Ichinose et al. on page 623 in Issue 5, 2020 (DOI: 10.1002/cbic.201900490).</abstract><doi>10.1002/cbic.202000077</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1973-1551</orcidid><orcidid>https://orcid.org/0000-0002-8716-4985</orcidid><orcidid>https://orcid.org/0000-0003-3734-4336</orcidid><orcidid>https://orcid.org/0000-0001-9529-0407</orcidid><orcidid>https://orcid.org/0000-0001-5225-2689</orcidid><orcidid>https://orcid.org/0000-0002-9972-6164</orcidid><orcidid>https://orcid.org/0000-0002-5002-3775</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4227 |
ispartof | Chembiochem : a European journal of chemical biology, 2020-03, Vol.21 (5), p.574-574 |
issn | 1439-4227 1439-7633 |
language | eng |
recordid | cdi_crossref_primary_10_1002_cbic_202000077 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | actinorhodin aromatic hydroxylation biosynthesis flavin-dependent monooxygenases reaction mechanisms |
title | Cover Feature: Unveiling Two Consecutive Hydroxylations: Mechanisms of Aromatic Hydroxylations Catalyzed by Flavin‐Dependent Monooxygenases for the Biosynthesis of Actinorhodin and Related Antibiotics (ChemBioChem 5/2020) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A41%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cover%20Feature:%20Unveiling%20Two%20Consecutive%20Hydroxylations:%20Mechanisms%20of%20Aromatic%20Hydroxylations%20Catalyzed%20by%20Flavin%E2%80%90Dependent%20Monooxygenases%20for%20the%20Biosynthesis%20of%20Actinorhodin%20and%20Related%20Antibiotics%20(ChemBioChem%205/2020)&rft.jtitle=Chembiochem%20:%20a%20European%20journal%20of%20chemical%20biology&rft.au=Hashimoto,%20Makoto&rft.date=2020-03-02&rft.volume=21&rft.issue=5&rft.spage=574&rft.epage=574&rft.pages=574-574&rft.issn=1439-4227&rft.eissn=1439-7633&rft_id=info:doi/10.1002/cbic.202000077&rft_dat=%3Cwiley_cross%3ECBIC202000077%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |