Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations

An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biometrical journal 1980, Vol.22 (6), p.487-495
Hauptverfasser: Schmerling, S., Peil, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 495
container_issue 6
container_start_page 487
container_title Biometrical journal
container_volume 22
creator Schmerling, S.
Peil, J.
description An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research.
doi_str_mv 10.1002/bimj.4710220604
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_bimj_4710220604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_T52K8ZRD_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRYMoOD7WbvsHWiuP7oy48v1WEEVwEzJJRaPd02OS0fFL_F3TjCiuXBWpe8-tcAnZoLBJAdjWyLfPm0JSYAxqEAtkQCtGSwG8XiQD4IyXfCjkMlmJ8RkAtkGwAfk8bCc-eKObIuBjwBh9Ny50LHRhurH1KT-zhrMJmoS2eNPNFIvOZT3mlc-a9TEFP5r21rL1szQNWLguZEvbWWxcQCxep3qcfNLJv2G-ZLpg_fixD4qpM086pu8_NLrPiWtkyekm4vr3XCV3R4e3-yflxfXx6f7uRWmYqEXJDBdS1twKLap6G2WF1hpBDWOSMqBUC20sMD5io6FxlZMAmjoLVhusneSrZGuea0IXY0CnJsG3OnwoCqrvVfW9qt9eM7EzJ959gx__2dXe6eXZH7qc07k0nP3QOryoWnJZqfurY3VbsfPhw82BEvwL3JaRHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</title><source>Access via Wiley Online Library</source><creator>Schmerling, S. ; Peil, J.</creator><creatorcontrib>Schmerling, S. ; Peil, J.</creatorcontrib><description>An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.4710220604</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Empirical regression ; mixture of densities</subject><ispartof>Biometrical journal, 1980, Vol.22 (6), p.487-495</ispartof><rights>Copyright © 1980 WILEY‐VCH Verlag GmbH &amp; Co. KGaA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</citedby><cites>FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.4710220604$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.4710220604$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schmerling, S.</creatorcontrib><creatorcontrib>Peil, J.</creatorcontrib><title>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research.</description><subject>Empirical regression</subject><subject>mixture of densities</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRYMoOD7WbvsHWiuP7oy48v1WEEVwEzJJRaPd02OS0fFL_F3TjCiuXBWpe8-tcAnZoLBJAdjWyLfPm0JSYAxqEAtkQCtGSwG8XiQD4IyXfCjkMlmJ8RkAtkGwAfk8bCc-eKObIuBjwBh9Ny50LHRhurH1KT-zhrMJmoS2eNPNFIvOZT3mlc-a9TEFP5r21rL1szQNWLguZEvbWWxcQCxep3qcfNLJv2G-ZLpg_fixD4qpM086pu8_NLrPiWtkyekm4vr3XCV3R4e3-yflxfXx6f7uRWmYqEXJDBdS1twKLap6G2WF1hpBDWOSMqBUC20sMD5io6FxlZMAmjoLVhusneSrZGuea0IXY0CnJsG3OnwoCqrvVfW9qt9eM7EzJ959gx__2dXe6eXZH7qc07k0nP3QOryoWnJZqfurY3VbsfPhw82BEvwL3JaRHA</recordid><startdate>1980</startdate><enddate>1980</enddate><creator>Schmerling, S.</creator><creator>Peil, J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1980</creationdate><title>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</title><author>Schmerling, S. ; Peil, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Empirical regression</topic><topic>mixture of densities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmerling, S.</creatorcontrib><creatorcontrib>Peil, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmerling, S.</au><au>Peil, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>1980</date><risdate>1980</risdate><volume>22</volume><issue>6</issue><spage>487</spage><epage>495</epage><pages>487-495</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/bimj.4710220604</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0323-3847
ispartof Biometrical journal, 1980, Vol.22 (6), p.487-495
issn 0323-3847
1521-4036
language eng
recordid cdi_crossref_primary_10_1002_bimj_4710220604
source Access via Wiley Online Library
subjects Empirical regression
mixture of densities
title Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20regression%20as%20a%20conditional%20expected%20value%20of%20a%20special%20distribution-mixture%20for%20a%20modelfree%20quantitative%20recording%20of%20stochastical%20relations&rft.jtitle=Biometrical%20journal&rft.au=Schmerling,%20S.&rft.date=1980&rft.volume=22&rft.issue=6&rft.spage=487&rft.epage=495&rft.pages=487-495&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.4710220604&rft_dat=%3Cistex_cross%3Eark_67375_WNG_T52K8ZRD_4%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true