Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations
An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. T...
Gespeichert in:
Veröffentlicht in: | Biometrical journal 1980, Vol.22 (6), p.487-495 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 495 |
---|---|
container_issue | 6 |
container_start_page | 487 |
container_title | Biometrical journal |
container_volume | 22 |
creator | Schmerling, S. Peil, J. |
description | An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research. |
doi_str_mv | 10.1002/bimj.4710220604 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_bimj_4710220604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_T52K8ZRD_4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</originalsourceid><addsrcrecordid>eNqFkMtKBDEQRYMoOD7WbvsHWiuP7oy48v1WEEVwEzJJRaPd02OS0fFL_F3TjCiuXBWpe8-tcAnZoLBJAdjWyLfPm0JSYAxqEAtkQCtGSwG8XiQD4IyXfCjkMlmJ8RkAtkGwAfk8bCc-eKObIuBjwBh9Ny50LHRhurH1KT-zhrMJmoS2eNPNFIvOZT3mlc-a9TEFP5r21rL1szQNWLguZEvbWWxcQCxep3qcfNLJv2G-ZLpg_fixD4qpM086pu8_NLrPiWtkyekm4vr3XCV3R4e3-yflxfXx6f7uRWmYqEXJDBdS1twKLap6G2WF1hpBDWOSMqBUC20sMD5io6FxlZMAmjoLVhusneSrZGuea0IXY0CnJsG3OnwoCqrvVfW9qt9eM7EzJ959gx__2dXe6eXZH7qc07k0nP3QOryoWnJZqfurY3VbsfPhw82BEvwL3JaRHA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</title><source>Access via Wiley Online Library</source><creator>Schmerling, S. ; Peil, J.</creator><creatorcontrib>Schmerling, S. ; Peil, J.</creatorcontrib><description>An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research.</description><identifier>ISSN: 0323-3847</identifier><identifier>EISSN: 1521-4036</identifier><identifier>DOI: 10.1002/bimj.4710220604</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>Empirical regression ; mixture of densities</subject><ispartof>Biometrical journal, 1980, Vol.22 (6), p.487-495</ispartof><rights>Copyright © 1980 WILEY‐VCH Verlag GmbH & Co. KGaA</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</citedby><cites>FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbimj.4710220604$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbimj.4710220604$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,4024,27923,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Schmerling, S.</creatorcontrib><creatorcontrib>Peil, J.</creatorcontrib><title>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</title><title>Biometrical journal</title><addtitle>Biom. J</addtitle><description>An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research.</description><subject>Empirical regression</subject><subject>mixture of densities</subject><issn>0323-3847</issn><issn>1521-4036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1980</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKBDEQRYMoOD7WbvsHWiuP7oy48v1WEEVwEzJJRaPd02OS0fFL_F3TjCiuXBWpe8-tcAnZoLBJAdjWyLfPm0JSYAxqEAtkQCtGSwG8XiQD4IyXfCjkMlmJ8RkAtkGwAfk8bCc-eKObIuBjwBh9Ny50LHRhurH1KT-zhrMJmoS2eNPNFIvOZT3mlc-a9TEFP5r21rL1szQNWLguZEvbWWxcQCxep3qcfNLJv2G-ZLpg_fixD4qpM086pu8_NLrPiWtkyekm4vr3XCV3R4e3-yflxfXx6f7uRWmYqEXJDBdS1twKLap6G2WF1hpBDWOSMqBUC20sMD5io6FxlZMAmjoLVhusneSrZGuea0IXY0CnJsG3OnwoCqrvVfW9qt9eM7EzJ959gx__2dXe6eXZH7qc07k0nP3QOryoWnJZqfurY3VbsfPhw82BEvwL3JaRHA</recordid><startdate>1980</startdate><enddate>1980</enddate><creator>Schmerling, S.</creator><creator>Peil, J.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1980</creationdate><title>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</title><author>Schmerling, S. ; Peil, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2464-2c347763d4a4569e75eddc41c22712011a4acd023b2b8cf5f700a1fd0dace6f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1980</creationdate><topic>Empirical regression</topic><topic>mixture of densities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schmerling, S.</creatorcontrib><creatorcontrib>Peil, J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Biometrical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schmerling, S.</au><au>Peil, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations</atitle><jtitle>Biometrical journal</jtitle><addtitle>Biom. J</addtitle><date>1980</date><risdate>1980</risdate><volume>22</volume><issue>6</issue><spage>487</spage><epage>495</epage><pages>487-495</pages><issn>0323-3847</issn><eissn>1521-4036</eissn><abstract>An “empirical” distribution function F̂(x, y) is estimated from measured points (xi, yi), i =1(1)n, of a continuous two‐dimensional random variable (X, Y) with unknown continuous density function f(x, y). The density function F̂(x, y) of F̂(x, y) is a mixture of n two‐dimensional normal densities. The first order moments of F̂(x, y) are the sample means x and y, whilst the second order moments are only proportional to the sample variances and the sample covariance. This “empirical” distribution F̂(x, y) is used for evaluation of an empirical regression curve where a free parameter has to be fixed by an optimality criterion. The procedure is demonstrated by an example from morphometrical research.</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/bimj.4710220604</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0323-3847 |
ispartof | Biometrical journal, 1980, Vol.22 (6), p.487-495 |
issn | 0323-3847 1521-4036 |
language | eng |
recordid | cdi_crossref_primary_10_1002_bimj_4710220604 |
source | Access via Wiley Online Library |
subjects | Empirical regression mixture of densities |
title | Empirical regression as a conditional expected value of a special distribution-mixture for a modelfree quantitative recording of stochastical relations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Empirical%20regression%20as%20a%20conditional%20expected%20value%20of%20a%20special%20distribution-mixture%20for%20a%20modelfree%20quantitative%20recording%20of%20stochastical%20relations&rft.jtitle=Biometrical%20journal&rft.au=Schmerling,%20S.&rft.date=1980&rft.volume=22&rft.issue=6&rft.spage=487&rft.epage=495&rft.pages=487-495&rft.issn=0323-3847&rft.eissn=1521-4036&rft_id=info:doi/10.1002/bimj.4710220604&rft_dat=%3Cistex_cross%3Eark_67375_WNG_T52K8ZRD_4%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |