Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries
Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASI...
Gespeichert in:
Veröffentlicht in: | Batteries & supercaps 2024-11 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Batteries & supercaps |
container_volume | |
creator | Soundharrajan, Vaiyapuri Alfaza, Ghalib Arifiadi, Anindityo Feleke, Demelash Nithiananth, Subramanian Piao, JunJi Zeng, Zhiyuan Pham, Duong Tung Kim, Chunjoong Kim, Jaekook |
description | Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances. |
doi_str_mv | 10.1002/batt.202400526 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_batt_202400526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_batt_202400526</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_batt_2024005263</originalsourceid><addsrcrecordid>eNqVj7FOwzAURS0EEhV0ZX4jHRpe7CRIbCVq1Q5JkRqxWoa8gFFqV7Y7dIM_6DfyJTgIIVam-650j_QOY1cpJikiv3lSISQceYaY8-KEjXheFNOCc3H65z5nY-_fMAJphrdCjNhHrUAkOVxX5nFBjZ4ADu1hDRlMQMAdzKDa90F_vh8bp4zXQVsTS0VB9TFX321uXrQhctRCPdusynU97A87glKFV9uSh8462NhW77cQGbiPD5PT5C_ZWad6T-OfvGDJYt6Uy-mzs9476uTO6a1yB5miHFzl4Cp_XcW_gS9bqF2K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</title><source>Wiley Journals</source><creator>Soundharrajan, Vaiyapuri ; Alfaza, Ghalib ; Arifiadi, Anindityo ; Feleke, Demelash ; Nithiananth, Subramanian ; Piao, JunJi ; Zeng, Zhiyuan ; Pham, Duong Tung ; Kim, Chunjoong ; Kim, Jaekook</creator><creatorcontrib>Soundharrajan, Vaiyapuri ; Alfaza, Ghalib ; Arifiadi, Anindityo ; Feleke, Demelash ; Nithiananth, Subramanian ; Piao, JunJi ; Zeng, Zhiyuan ; Pham, Duong Tung ; Kim, Chunjoong ; Kim, Jaekook</creatorcontrib><description>Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</description><identifier>ISSN: 2566-6223</identifier><identifier>EISSN: 2566-6223</identifier><identifier>DOI: 10.1002/batt.202400526</identifier><language>eng</language><ispartof>Batteries & supercaps, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_batt_2024005263</cites><orcidid>0000-0002-6638-249X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soundharrajan, Vaiyapuri</creatorcontrib><creatorcontrib>Alfaza, Ghalib</creatorcontrib><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Feleke, Demelash</creatorcontrib><creatorcontrib>Nithiananth, Subramanian</creatorcontrib><creatorcontrib>Piao, JunJi</creatorcontrib><creatorcontrib>Zeng, Zhiyuan</creatorcontrib><creatorcontrib>Pham, Duong Tung</creatorcontrib><creatorcontrib>Kim, Chunjoong</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><title>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</title><title>Batteries & supercaps</title><description>Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</description><issn>2566-6223</issn><issn>2566-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj7FOwzAURS0EEhV0ZX4jHRpe7CRIbCVq1Q5JkRqxWoa8gFFqV7Y7dIM_6DfyJTgIIVam-650j_QOY1cpJikiv3lSISQceYaY8-KEjXheFNOCc3H65z5nY-_fMAJphrdCjNhHrUAkOVxX5nFBjZ4ADu1hDRlMQMAdzKDa90F_vh8bp4zXQVsTS0VB9TFX321uXrQhctRCPdusynU97A87glKFV9uSh8462NhW77cQGbiPD5PT5C_ZWad6T-OfvGDJYt6Uy-mzs9476uTO6a1yB5miHFzl4Cp_XcW_gS9bqF2K</recordid><startdate>20241116</startdate><enddate>20241116</enddate><creator>Soundharrajan, Vaiyapuri</creator><creator>Alfaza, Ghalib</creator><creator>Arifiadi, Anindityo</creator><creator>Feleke, Demelash</creator><creator>Nithiananth, Subramanian</creator><creator>Piao, JunJi</creator><creator>Zeng, Zhiyuan</creator><creator>Pham, Duong Tung</creator><creator>Kim, Chunjoong</creator><creator>Kim, Jaekook</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6638-249X</orcidid></search><sort><creationdate>20241116</creationdate><title>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</title><author>Soundharrajan, Vaiyapuri ; Alfaza, Ghalib ; Arifiadi, Anindityo ; Feleke, Demelash ; Nithiananth, Subramanian ; Piao, JunJi ; Zeng, Zhiyuan ; Pham, Duong Tung ; Kim, Chunjoong ; Kim, Jaekook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_batt_2024005263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soundharrajan, Vaiyapuri</creatorcontrib><creatorcontrib>Alfaza, Ghalib</creatorcontrib><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Feleke, Demelash</creatorcontrib><creatorcontrib>Nithiananth, Subramanian</creatorcontrib><creatorcontrib>Piao, JunJi</creatorcontrib><creatorcontrib>Zeng, Zhiyuan</creatorcontrib><creatorcontrib>Pham, Duong Tung</creatorcontrib><creatorcontrib>Kim, Chunjoong</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><collection>CrossRef</collection><jtitle>Batteries & supercaps</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soundharrajan, Vaiyapuri</au><au>Alfaza, Ghalib</au><au>Arifiadi, Anindityo</au><au>Feleke, Demelash</au><au>Nithiananth, Subramanian</au><au>Piao, JunJi</au><au>Zeng, Zhiyuan</au><au>Pham, Duong Tung</au><au>Kim, Chunjoong</au><au>Kim, Jaekook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</atitle><jtitle>Batteries & supercaps</jtitle><date>2024-11-16</date><risdate>2024</risdate><issn>2566-6223</issn><eissn>2566-6223</eissn><abstract>Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</abstract><doi>10.1002/batt.202400526</doi><orcidid>https://orcid.org/0000-0002-6638-249X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2566-6223 |
ispartof | Batteries & supercaps, 2024-11 |
issn | 2566-6223 2566-6223 |
language | eng |
recordid | cdi_crossref_primary_10_1002_batt_202400526 |
source | Wiley Journals |
title | Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na%203.5%20(MnVFeTi)%200.5%20(PO%204%20)%203%20:%20A%20Multi%E2%80%90Transition%E2%80%90Metal%E2%80%90Ion%E2%80%90Engineered%20NASICON%E2%80%90Type%20Cathodes%20for%20Sodium%20Ion%20Batteries&rft.jtitle=Batteries%20&%20supercaps&rft.au=Soundharrajan,%20Vaiyapuri&rft.date=2024-11-16&rft.issn=2566-6223&rft.eissn=2566-6223&rft_id=info:doi/10.1002/batt.202400526&rft_dat=%3Ccrossref%3E10_1002_batt_202400526%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |