Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries

Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Batteries & supercaps 2024-11
Hauptverfasser: Soundharrajan, Vaiyapuri, Alfaza, Ghalib, Arifiadi, Anindityo, Feleke, Demelash, Nithiananth, Subramanian, Piao, JunJi, Zeng, Zhiyuan, Pham, Duong Tung, Kim, Chunjoong, Kim, Jaekook
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Batteries & supercaps
container_volume
creator Soundharrajan, Vaiyapuri
Alfaza, Ghalib
Arifiadi, Anindityo
Feleke, Demelash
Nithiananth, Subramanian
Piao, JunJi
Zeng, Zhiyuan
Pham, Duong Tung
Kim, Chunjoong
Kim, Jaekook
description Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.
doi_str_mv 10.1002/batt.202400526
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_batt_202400526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_batt_202400526</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_batt_2024005263</originalsourceid><addsrcrecordid>eNqVj7FOwzAURS0EEhV0ZX4jHRpe7CRIbCVq1Q5JkRqxWoa8gFFqV7Y7dIM_6DfyJTgIIVam-650j_QOY1cpJikiv3lSISQceYaY8-KEjXheFNOCc3H65z5nY-_fMAJphrdCjNhHrUAkOVxX5nFBjZ4ADu1hDRlMQMAdzKDa90F_vh8bp4zXQVsTS0VB9TFX321uXrQhctRCPdusynU97A87glKFV9uSh8462NhW77cQGbiPD5PT5C_ZWad6T-OfvGDJYt6Uy-mzs9476uTO6a1yB5miHFzl4Cp_XcW_gS9bqF2K</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</title><source>Wiley Journals</source><creator>Soundharrajan, Vaiyapuri ; Alfaza, Ghalib ; Arifiadi, Anindityo ; Feleke, Demelash ; Nithiananth, Subramanian ; Piao, JunJi ; Zeng, Zhiyuan ; Pham, Duong Tung ; Kim, Chunjoong ; Kim, Jaekook</creator><creatorcontrib>Soundharrajan, Vaiyapuri ; Alfaza, Ghalib ; Arifiadi, Anindityo ; Feleke, Demelash ; Nithiananth, Subramanian ; Piao, JunJi ; Zeng, Zhiyuan ; Pham, Duong Tung ; Kim, Chunjoong ; Kim, Jaekook</creatorcontrib><description>Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</description><identifier>ISSN: 2566-6223</identifier><identifier>EISSN: 2566-6223</identifier><identifier>DOI: 10.1002/batt.202400526</identifier><language>eng</language><ispartof>Batteries &amp; supercaps, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_batt_2024005263</cites><orcidid>0000-0002-6638-249X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Soundharrajan, Vaiyapuri</creatorcontrib><creatorcontrib>Alfaza, Ghalib</creatorcontrib><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Feleke, Demelash</creatorcontrib><creatorcontrib>Nithiananth, Subramanian</creatorcontrib><creatorcontrib>Piao, JunJi</creatorcontrib><creatorcontrib>Zeng, Zhiyuan</creatorcontrib><creatorcontrib>Pham, Duong Tung</creatorcontrib><creatorcontrib>Kim, Chunjoong</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><title>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</title><title>Batteries &amp; supercaps</title><description>Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</description><issn>2566-6223</issn><issn>2566-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj7FOwzAURS0EEhV0ZX4jHRpe7CRIbCVq1Q5JkRqxWoa8gFFqV7Y7dIM_6DfyJTgIIVam-650j_QOY1cpJikiv3lSISQceYaY8-KEjXheFNOCc3H65z5nY-_fMAJphrdCjNhHrUAkOVxX5nFBjZ4ADu1hDRlMQMAdzKDa90F_vh8bp4zXQVsTS0VB9TFX321uXrQhctRCPdusynU97A87glKFV9uSh8462NhW77cQGbiPD5PT5C_ZWad6T-OfvGDJYt6Uy-mzs9476uTO6a1yB5miHFzl4Cp_XcW_gS9bqF2K</recordid><startdate>20241116</startdate><enddate>20241116</enddate><creator>Soundharrajan, Vaiyapuri</creator><creator>Alfaza, Ghalib</creator><creator>Arifiadi, Anindityo</creator><creator>Feleke, Demelash</creator><creator>Nithiananth, Subramanian</creator><creator>Piao, JunJi</creator><creator>Zeng, Zhiyuan</creator><creator>Pham, Duong Tung</creator><creator>Kim, Chunjoong</creator><creator>Kim, Jaekook</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6638-249X</orcidid></search><sort><creationdate>20241116</creationdate><title>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</title><author>Soundharrajan, Vaiyapuri ; Alfaza, Ghalib ; Arifiadi, Anindityo ; Feleke, Demelash ; Nithiananth, Subramanian ; Piao, JunJi ; Zeng, Zhiyuan ; Pham, Duong Tung ; Kim, Chunjoong ; Kim, Jaekook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_batt_2024005263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soundharrajan, Vaiyapuri</creatorcontrib><creatorcontrib>Alfaza, Ghalib</creatorcontrib><creatorcontrib>Arifiadi, Anindityo</creatorcontrib><creatorcontrib>Feleke, Demelash</creatorcontrib><creatorcontrib>Nithiananth, Subramanian</creatorcontrib><creatorcontrib>Piao, JunJi</creatorcontrib><creatorcontrib>Zeng, Zhiyuan</creatorcontrib><creatorcontrib>Pham, Duong Tung</creatorcontrib><creatorcontrib>Kim, Chunjoong</creatorcontrib><creatorcontrib>Kim, Jaekook</creatorcontrib><collection>CrossRef</collection><jtitle>Batteries &amp; supercaps</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soundharrajan, Vaiyapuri</au><au>Alfaza, Ghalib</au><au>Arifiadi, Anindityo</au><au>Feleke, Demelash</au><au>Nithiananth, Subramanian</au><au>Piao, JunJi</au><au>Zeng, Zhiyuan</au><au>Pham, Duong Tung</au><au>Kim, Chunjoong</au><au>Kim, Jaekook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries</atitle><jtitle>Batteries &amp; supercaps</jtitle><date>2024-11-16</date><risdate>2024</risdate><issn>2566-6223</issn><eissn>2566-6223</eissn><abstract>Electrochemically active Na‐superionic conductor (NASICON)‐type cathodes have the structural flexibility to include various transition elements, thus enabling high power outputs benefited by multi‐electron redox reactions. This study amalgamated multiple transition metal ions to construct a new NASICON‐type cathode i. e., carbon coated Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 (NMVFTP/C) for Na‐ion batteries (NIBs). The NMVFTP/C cathode engineered in this study demonstrated stable Na + ‐storage capacity, including long‐term cycling stability up to 4000 cycles at 3000 mA g −1 with 96 % capacity retention and a high‐rate output capacity of 85.16 mAh g −1 at 2500 mA g −1 . To elucidate the ion transport process within the cathode, density functional theory modeling was employed. The low energy barrier for the diffusion of Na + in the NMVFTP/C materials was proved to be a key factor supporting our material's superior electrochemical performances.</abstract><doi>10.1002/batt.202400526</doi><orcidid>https://orcid.org/0000-0002-6638-249X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2566-6223
ispartof Batteries & supercaps, 2024-11
issn 2566-6223
2566-6223
language eng
recordid cdi_crossref_primary_10_1002_batt_202400526
source Wiley Journals
title Na 3.5 (MnVFeTi) 0.5 (PO 4 ) 3 : A Multi‐Transition‐Metal‐Ion‐Engineered NASICON‐Type Cathodes for Sodium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A43%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Na%203.5%20(MnVFeTi)%200.5%20(PO%204%20)%203%20:%20A%20Multi%E2%80%90Transition%E2%80%90Metal%E2%80%90Ion%E2%80%90Engineered%20NASICON%E2%80%90Type%20Cathodes%20for%20Sodium%20Ion%20Batteries&rft.jtitle=Batteries%20&%20supercaps&rft.au=Soundharrajan,%20Vaiyapuri&rft.date=2024-11-16&rft.issn=2566-6223&rft.eissn=2566-6223&rft_id=info:doi/10.1002/batt.202400526&rft_dat=%3Ccrossref%3E10_1002_batt_202400526%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true