Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF‐HFP‐Based Bilayer Composite Solid‐State Electrolytes

Composite solid‐state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid‐state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Batteries & supercaps 2024-10
Hauptverfasser: Chen, Minghua, Liu, Wannian, Wu, Yixin, Liu, Yulong, Wang, Yang, chen, zhen
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Batteries & supercaps
container_volume
creator Chen, Minghua
Liu, Wannian
Wu, Yixin
Liu, Yulong
Wang, Yang
chen, zhen
description Composite solid‐state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid‐state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination method, is crucial in determining the performance of CSEs. To address the challenges of lithium dendrite inhibition and compatibility with cathodes simultaneously, herein, we have constructed a bilayer CSE based on poly(vinylidene fluoride)‐hexafluoropropylene (PVDF‐HFP). Al/Nb co‐doped Li6.25Al0.25La3Zr1.75Nb0.25O12 (LALZNO) nanofibers prepared by an electrostatic spinning technique, are incorporated as fillers to create high‐throughput Li+ transport pathways and enhance the overall performance of the CSE. Furthermore, polypropylene carbonate is introduced on the anode side of the CSE to enhance the wettability of lithium metal/CSE interface, thus improving the stability of lithium upon cycling. On the cathode side, succinonitrile is added to inhibit the crystallization of PVDF‐HFP and facilitate the fast Li+ transport. Consequently, the Li||Li cells demonstrate stable plating‐stripping performance at 0.1 mA cm−2 for >520 h. In addition, the Li||LiFePO4 full cells show improved cycling and rate performance. This work validates the effectiveness of developing bilayer CSEs and showcases their potential application in SSLMBs.
doi_str_mv 10.1002/batt.202400379
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_batt_202400379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_batt_202400379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c124t-4cbb6b231cff5988608b99a50fb109440ca4ad52f22d2cd43b1e731845ad724f3</originalsourceid><addsrcrecordid>eNpNkD1OAzEQhS0EEhGkpd4L7GKPvX9lErIEaZVEBChoVrbXloycbGS7iUTBETgCZ-EonARHIETzZt7MvCk-hK4IzgjGcC14CBlgYBjTsj5BI8iLIi0A6Om__hyNvX_BMUAYLikdodfWFBnkE4ujtpw-O5KV-VIc7YrA58eS7wZthHJJY6xVzif3yuz04KTqk_XTTfP19r5o1lGn3MfR1Fh-iNezYbsfvAkq2QzW9HG_CTy6uVUyuMEegvKX6Exz69X4t16gx2b-MFuk7er2bjZpU0mAhZRJIQoBlEit87qqClyJuuY51oLgmjEsOeN9DhqgB9kzKogqKalYzvsSmKYXKPv5K93gvVO62zuz5e7QEdwd8XVHfN0fPvoNVqdkvA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF‐HFP‐Based Bilayer Composite Solid‐State Electrolytes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Chen, Minghua ; Liu, Wannian ; Wu, Yixin ; Liu, Yulong ; Wang, Yang ; chen, zhen</creator><creatorcontrib>Chen, Minghua ; Liu, Wannian ; Wu, Yixin ; Liu, Yulong ; Wang, Yang ; chen, zhen</creatorcontrib><description>Composite solid‐state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid‐state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination method, is crucial in determining the performance of CSEs. To address the challenges of lithium dendrite inhibition and compatibility with cathodes simultaneously, herein, we have constructed a bilayer CSE based on poly(vinylidene fluoride)‐hexafluoropropylene (PVDF‐HFP). Al/Nb co‐doped Li6.25Al0.25La3Zr1.75Nb0.25O12 (LALZNO) nanofibers prepared by an electrostatic spinning technique, are incorporated as fillers to create high‐throughput Li+ transport pathways and enhance the overall performance of the CSE. Furthermore, polypropylene carbonate is introduced on the anode side of the CSE to enhance the wettability of lithium metal/CSE interface, thus improving the stability of lithium upon cycling. On the cathode side, succinonitrile is added to inhibit the crystallization of PVDF‐HFP and facilitate the fast Li+ transport. Consequently, the Li||Li cells demonstrate stable plating‐stripping performance at 0.1 mA cm−2 for &gt;520 h. In addition, the Li||LiFePO4 full cells show improved cycling and rate performance. This work validates the effectiveness of developing bilayer CSEs and showcases their potential application in SSLMBs.</description><identifier>ISSN: 2566-6223</identifier><identifier>EISSN: 2566-6223</identifier><identifier>DOI: 10.1002/batt.202400379</identifier><language>eng</language><ispartof>Batteries &amp; supercaps, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Chen, Minghua</creatorcontrib><creatorcontrib>Liu, Wannian</creatorcontrib><creatorcontrib>Wu, Yixin</creatorcontrib><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>chen, zhen</creatorcontrib><title>Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF‐HFP‐Based Bilayer Composite Solid‐State Electrolytes</title><title>Batteries &amp; supercaps</title><description>Composite solid‐state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid‐state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination method, is crucial in determining the performance of CSEs. To address the challenges of lithium dendrite inhibition and compatibility with cathodes simultaneously, herein, we have constructed a bilayer CSE based on poly(vinylidene fluoride)‐hexafluoropropylene (PVDF‐HFP). Al/Nb co‐doped Li6.25Al0.25La3Zr1.75Nb0.25O12 (LALZNO) nanofibers prepared by an electrostatic spinning technique, are incorporated as fillers to create high‐throughput Li+ transport pathways and enhance the overall performance of the CSE. Furthermore, polypropylene carbonate is introduced on the anode side of the CSE to enhance the wettability of lithium metal/CSE interface, thus improving the stability of lithium upon cycling. On the cathode side, succinonitrile is added to inhibit the crystallization of PVDF‐HFP and facilitate the fast Li+ transport. Consequently, the Li||Li cells demonstrate stable plating‐stripping performance at 0.1 mA cm−2 for &gt;520 h. In addition, the Li||LiFePO4 full cells show improved cycling and rate performance. This work validates the effectiveness of developing bilayer CSEs and showcases their potential application in SSLMBs.</description><issn>2566-6223</issn><issn>2566-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkD1OAzEQhS0EEhGkpd4L7GKPvX9lErIEaZVEBChoVrbXloycbGS7iUTBETgCZ-EonARHIETzZt7MvCk-hK4IzgjGcC14CBlgYBjTsj5BI8iLIi0A6Om__hyNvX_BMUAYLikdodfWFBnkE4ujtpw-O5KV-VIc7YrA58eS7wZthHJJY6xVzif3yuz04KTqk_XTTfP19r5o1lGn3MfR1Fh-iNezYbsfvAkq2QzW9HG_CTy6uVUyuMEegvKX6Exz69X4t16gx2b-MFuk7er2bjZpU0mAhZRJIQoBlEit87qqClyJuuY51oLgmjEsOeN9DhqgB9kzKogqKalYzvsSmKYXKPv5K93gvVO62zuz5e7QEdwd8XVHfN0fPvoNVqdkvA</recordid><startdate>20241017</startdate><enddate>20241017</enddate><creator>Chen, Minghua</creator><creator>Liu, Wannian</creator><creator>Wu, Yixin</creator><creator>Liu, Yulong</creator><creator>Wang, Yang</creator><creator>chen, zhen</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241017</creationdate><title>Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF‐HFP‐Based Bilayer Composite Solid‐State Electrolytes</title><author>Chen, Minghua ; Liu, Wannian ; Wu, Yixin ; Liu, Yulong ; Wang, Yang ; chen, zhen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c124t-4cbb6b231cff5988608b99a50fb109440ca4ad52f22d2cd43b1e731845ad724f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Minghua</creatorcontrib><creatorcontrib>Liu, Wannian</creatorcontrib><creatorcontrib>Wu, Yixin</creatorcontrib><creatorcontrib>Liu, Yulong</creatorcontrib><creatorcontrib>Wang, Yang</creatorcontrib><creatorcontrib>chen, zhen</creatorcontrib><collection>CrossRef</collection><jtitle>Batteries &amp; supercaps</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Minghua</au><au>Liu, Wannian</au><au>Wu, Yixin</au><au>Liu, Yulong</au><au>Wang, Yang</au><au>chen, zhen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF‐HFP‐Based Bilayer Composite Solid‐State Electrolytes</atitle><jtitle>Batteries &amp; supercaps</jtitle><date>2024-10-17</date><risdate>2024</risdate><issn>2566-6223</issn><eissn>2566-6223</eissn><abstract>Composite solid‐state electrolytes (CSEs) combining the advantages of polymer and ceramic electrolytes, are regarded as highly promising candidates for solid‐state lithium metal batteries (SSLMBs). However, selecting appropriate polymer and ceramic materials, along with an effective combination method, is crucial in determining the performance of CSEs. To address the challenges of lithium dendrite inhibition and compatibility with cathodes simultaneously, herein, we have constructed a bilayer CSE based on poly(vinylidene fluoride)‐hexafluoropropylene (PVDF‐HFP). Al/Nb co‐doped Li6.25Al0.25La3Zr1.75Nb0.25O12 (LALZNO) nanofibers prepared by an electrostatic spinning technique, are incorporated as fillers to create high‐throughput Li+ transport pathways and enhance the overall performance of the CSE. Furthermore, polypropylene carbonate is introduced on the anode side of the CSE to enhance the wettability of lithium metal/CSE interface, thus improving the stability of lithium upon cycling. On the cathode side, succinonitrile is added to inhibit the crystallization of PVDF‐HFP and facilitate the fast Li+ transport. Consequently, the Li||Li cells demonstrate stable plating‐stripping performance at 0.1 mA cm−2 for &gt;520 h. In addition, the Li||LiFePO4 full cells show improved cycling and rate performance. This work validates the effectiveness of developing bilayer CSEs and showcases their potential application in SSLMBs.</abstract><doi>10.1002/batt.202400379</doi></addata></record>
fulltext fulltext
identifier ISSN: 2566-6223
ispartof Batteries & supercaps, 2024-10
issn 2566-6223
2566-6223
language eng
recordid cdi_crossref_primary_10_1002_batt_202400379
source Wiley Online Library Journals Frontfile Complete
title Li6.25Al0.25La3Zr1.75Nb0.25O12 Nanofiber Fillers Reinforced PVDF‐HFP‐Based Bilayer Composite Solid‐State Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A10%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Li6.25Al0.25La3Zr1.75Nb0.25O12%C2%A0Nanofiber%20Fillers%20Reinforced%20PVDF%E2%80%90HFP%E2%80%90Based%20Bilayer%20Composite%20Solid%E2%80%90State%20Electrolytes&rft.jtitle=Batteries%20&%20supercaps&rft.au=Chen,%20Minghua&rft.date=2024-10-17&rft.issn=2566-6223&rft.eissn=2566-6223&rft_id=info:doi/10.1002/batt.202400379&rft_dat=%3Ccrossref%3E10_1002_batt_202400379%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true