Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023)

The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Batteries & supercaps 2023-12, Vol.6 (12), p.n/a
Hauptverfasser: Xu, Jiahui, Paredes‐Goyes, Brayan, Su, Zeliang, Scheel, Mario, Weitkamp, Timm, Demortière, Arnaud, Franco, Alejandro A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 12
container_start_page
container_title Batteries & supercaps
container_volume 6
creator Xu, Jiahui
Paredes‐Goyes, Brayan
Su, Zeliang
Scheel, Mario
Weitkamp, Timm
Demortière, Arnaud
Franco, Alejandro A.
description The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers.
doi_str_mv 10.1002/batt.202300525
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_batt_202300525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BATT202300525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1295-b3ebf46e34adf8ae014b6c89802284a2c5677386196b15b3c50dba86ba7da63c3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsNRePe9J9JB0P5JN4q2NrQoVC9ZzmN1MJJI2YbNRevNPN7Gi3jzNY978hscj5JwznzMmphqc8wUTkrFQhEdkJEKlPCWEPP6jT8mkbV9ZD_CARVKOyEdav6GlSwTXWbymab1tOgeurHdQ0Yc6x4oWtaVri3lpXLl7oWuwrjQV0qUFM1D0prODsajQONsjNIUKdzl-bS_nfbReYksv6FPXoDXQtJSL6RD36oycFFC1OPmeY_K8XGzSO2_1eHufzlae4SIJPS1RF4FCGUBexICMB1qZOImZEHEAwoQqimSseKI0D7U0Ics1xEpDlIOSRo6Jf_hrbN22FousseUW7D7jLBsqzIYKs58KeyA5AO9lhft_rrP5bLP5ZT8BwFN1jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries &amp; Supercaps 12/2023)</title><source>Wiley Journals</source><creator>Xu, Jiahui ; Paredes‐Goyes, Brayan ; Su, Zeliang ; Scheel, Mario ; Weitkamp, Timm ; Demortière, Arnaud ; Franco, Alejandro A.</creator><creatorcontrib>Xu, Jiahui ; Paredes‐Goyes, Brayan ; Su, Zeliang ; Scheel, Mario ; Weitkamp, Timm ; Demortière, Arnaud ; Franco, Alejandro A.</creatorcontrib><description>The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers.</description><identifier>ISSN: 2566-6223</identifier><identifier>EISSN: 2566-6223</identifier><identifier>DOI: 10.1002/batt.202300525</identifier><language>eng</language><subject>computer simulation ; discrete element method ; lithium-ion battery manufacturing ; secondary particle fracture ; synchrotron radiation ; X-ray nano tomography</subject><ispartof>Batteries &amp; supercaps, 2023-12, Vol.6 (12), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7362-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbatt.202300525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbatt.202300525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xu, Jiahui</creatorcontrib><creatorcontrib>Paredes‐Goyes, Brayan</creatorcontrib><creatorcontrib>Su, Zeliang</creatorcontrib><creatorcontrib>Scheel, Mario</creatorcontrib><creatorcontrib>Weitkamp, Timm</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><title>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries &amp; Supercaps 12/2023)</title><title>Batteries &amp; supercaps</title><description>The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers.</description><subject>computer simulation</subject><subject>discrete element method</subject><subject>lithium-ion battery manufacturing</subject><subject>secondary particle fracture</subject><subject>synchrotron radiation</subject><subject>X-ray nano tomography</subject><issn>2566-6223</issn><issn>2566-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsNRePe9J9JB0P5JN4q2NrQoVC9ZzmN1MJJI2YbNRevNPN7Gi3jzNY978hscj5JwznzMmphqc8wUTkrFQhEdkJEKlPCWEPP6jT8mkbV9ZD_CARVKOyEdav6GlSwTXWbymab1tOgeurHdQ0Yc6x4oWtaVri3lpXLl7oWuwrjQV0qUFM1D0prODsajQONsjNIUKdzl-bS_nfbReYksv6FPXoDXQtJSL6RD36oycFFC1OPmeY_K8XGzSO2_1eHufzlae4SIJPS1RF4FCGUBexICMB1qZOImZEHEAwoQqimSseKI0D7U0Ics1xEpDlIOSRo6Jf_hrbN22FousseUW7D7jLBsqzIYKs58KeyA5AO9lhft_rrP5bLP5ZT8BwFN1jw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Xu, Jiahui</creator><creator>Paredes‐Goyes, Brayan</creator><creator>Su, Zeliang</creator><creator>Scheel, Mario</creator><creator>Weitkamp, Timm</creator><creator>Demortière, Arnaud</creator><creator>Franco, Alejandro A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid></search><sort><creationdate>202312</creationdate><title>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries &amp; Supercaps 12/2023)</title><author>Xu, Jiahui ; Paredes‐Goyes, Brayan ; Su, Zeliang ; Scheel, Mario ; Weitkamp, Timm ; Demortière, Arnaud ; Franco, Alejandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1295-b3ebf46e34adf8ae014b6c89802284a2c5677386196b15b3c50dba86ba7da63c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>computer simulation</topic><topic>discrete element method</topic><topic>lithium-ion battery manufacturing</topic><topic>secondary particle fracture</topic><topic>synchrotron radiation</topic><topic>X-ray nano tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiahui</creatorcontrib><creatorcontrib>Paredes‐Goyes, Brayan</creatorcontrib><creatorcontrib>Su, Zeliang</creatorcontrib><creatorcontrib>Scheel, Mario</creatorcontrib><creatorcontrib>Weitkamp, Timm</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><collection>CrossRef</collection><jtitle>Batteries &amp; supercaps</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiahui</au><au>Paredes‐Goyes, Brayan</au><au>Su, Zeliang</au><au>Scheel, Mario</au><au>Weitkamp, Timm</au><au>Demortière, Arnaud</au><au>Franco, Alejandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries &amp; Supercaps 12/2023)</atitle><jtitle>Batteries &amp; supercaps</jtitle><date>2023-12</date><risdate>2023</risdate><volume>6</volume><issue>12</issue><epage>n/a</epage><issn>2566-6223</issn><eissn>2566-6223</eissn><abstract>The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers.</abstract><doi>10.1002/batt.202300525</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2566-6223
ispartof Batteries & supercaps, 2023-12, Vol.6 (12), p.n/a
issn 2566-6223
2566-6223
language eng
recordid cdi_crossref_primary_10_1002_batt_202300525
source Wiley Journals
subjects computer simulation
discrete element method
lithium-ion battery manufacturing
secondary particle fracture
synchrotron radiation
X-ray nano tomography
title Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cover%20Feature:%20Computational%20Model%20for%20Predicting%20Particle%20Fracture%20During%20Electrode%20Calendering%20(Batteries%20&%20Supercaps%2012/2023)&rft.jtitle=Batteries%20&%20supercaps&rft.au=Xu,%20Jiahui&rft.date=2023-12&rft.volume=6&rft.issue=12&rft.epage=n/a&rft.issn=2566-6223&rft.eissn=2566-6223&rft_id=info:doi/10.1002/batt.202300525&rft_dat=%3Cwiley_cross%3EBATT202300525%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true