Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023)
The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles....
Gespeichert in:
Veröffentlicht in: | Batteries & supercaps 2023-12, Vol.6 (12), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Batteries & supercaps |
container_volume | 6 |
creator | Xu, Jiahui Paredes‐Goyes, Brayan Su, Zeliang Scheel, Mario Weitkamp, Timm Demortière, Arnaud Franco, Alejandro A. |
description | The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers. |
doi_str_mv | 10.1002/batt.202300525 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_batt_202300525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BATT202300525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1295-b3ebf46e34adf8ae014b6c89802284a2c5677386196b15b3c50dba86ba7da63c3</originalsourceid><addsrcrecordid>eNqFkM1Lw0AQxRdRsNRePe9J9JB0P5JN4q2NrQoVC9ZzmN1MJJI2YbNRevNPN7Gi3jzNY978hscj5JwznzMmphqc8wUTkrFQhEdkJEKlPCWEPP6jT8mkbV9ZD_CARVKOyEdav6GlSwTXWbymab1tOgeurHdQ0Yc6x4oWtaVri3lpXLl7oWuwrjQV0qUFM1D0prODsajQONsjNIUKdzl-bS_nfbReYksv6FPXoDXQtJSL6RD36oycFFC1OPmeY_K8XGzSO2_1eHufzlae4SIJPS1RF4FCGUBexICMB1qZOImZEHEAwoQqimSseKI0D7U0Ics1xEpDlIOSRo6Jf_hrbN22FousseUW7D7jLBsqzIYKs58KeyA5AO9lhft_rrP5bLP5ZT8BwFN1jw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023)</title><source>Wiley Journals</source><creator>Xu, Jiahui ; Paredes‐Goyes, Brayan ; Su, Zeliang ; Scheel, Mario ; Weitkamp, Timm ; Demortière, Arnaud ; Franco, Alejandro A.</creator><creatorcontrib>Xu, Jiahui ; Paredes‐Goyes, Brayan ; Su, Zeliang ; Scheel, Mario ; Weitkamp, Timm ; Demortière, Arnaud ; Franco, Alejandro A.</creatorcontrib><description>The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers.</description><identifier>ISSN: 2566-6223</identifier><identifier>EISSN: 2566-6223</identifier><identifier>DOI: 10.1002/batt.202300525</identifier><language>eng</language><subject>computer simulation ; discrete element method ; lithium-ion battery manufacturing ; secondary particle fracture ; synchrotron radiation ; X-ray nano tomography</subject><ispartof>Batteries & supercaps, 2023-12, Vol.6 (12), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-7362-7849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbatt.202300525$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbatt.202300525$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Xu, Jiahui</creatorcontrib><creatorcontrib>Paredes‐Goyes, Brayan</creatorcontrib><creatorcontrib>Su, Zeliang</creatorcontrib><creatorcontrib>Scheel, Mario</creatorcontrib><creatorcontrib>Weitkamp, Timm</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><title>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023)</title><title>Batteries & supercaps</title><description>The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers.</description><subject>computer simulation</subject><subject>discrete element method</subject><subject>lithium-ion battery manufacturing</subject><subject>secondary particle fracture</subject><subject>synchrotron radiation</subject><subject>X-ray nano tomography</subject><issn>2566-6223</issn><issn>2566-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkM1Lw0AQxRdRsNRePe9J9JB0P5JN4q2NrQoVC9ZzmN1MJJI2YbNRevNPN7Gi3jzNY978hscj5JwznzMmphqc8wUTkrFQhEdkJEKlPCWEPP6jT8mkbV9ZD_CARVKOyEdav6GlSwTXWbymab1tOgeurHdQ0Yc6x4oWtaVri3lpXLl7oWuwrjQV0qUFM1D0prODsajQONsjNIUKdzl-bS_nfbReYksv6FPXoDXQtJSL6RD36oycFFC1OPmeY_K8XGzSO2_1eHufzlae4SIJPS1RF4FCGUBexICMB1qZOImZEHEAwoQqimSseKI0D7U0Ics1xEpDlIOSRo6Jf_hrbN22FousseUW7D7jLBsqzIYKs58KeyA5AO9lhft_rrP5bLP5ZT8BwFN1jw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Xu, Jiahui</creator><creator>Paredes‐Goyes, Brayan</creator><creator>Su, Zeliang</creator><creator>Scheel, Mario</creator><creator>Weitkamp, Timm</creator><creator>Demortière, Arnaud</creator><creator>Franco, Alejandro A.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid></search><sort><creationdate>202312</creationdate><title>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023)</title><author>Xu, Jiahui ; Paredes‐Goyes, Brayan ; Su, Zeliang ; Scheel, Mario ; Weitkamp, Timm ; Demortière, Arnaud ; Franco, Alejandro A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1295-b3ebf46e34adf8ae014b6c89802284a2c5677386196b15b3c50dba86ba7da63c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>computer simulation</topic><topic>discrete element method</topic><topic>lithium-ion battery manufacturing</topic><topic>secondary particle fracture</topic><topic>synchrotron radiation</topic><topic>X-ray nano tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Jiahui</creatorcontrib><creatorcontrib>Paredes‐Goyes, Brayan</creatorcontrib><creatorcontrib>Su, Zeliang</creatorcontrib><creatorcontrib>Scheel, Mario</creatorcontrib><creatorcontrib>Weitkamp, Timm</creatorcontrib><creatorcontrib>Demortière, Arnaud</creatorcontrib><creatorcontrib>Franco, Alejandro A.</creatorcontrib><collection>CrossRef</collection><jtitle>Batteries & supercaps</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Jiahui</au><au>Paredes‐Goyes, Brayan</au><au>Su, Zeliang</au><au>Scheel, Mario</au><au>Weitkamp, Timm</au><au>Demortière, Arnaud</au><au>Franco, Alejandro A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023)</atitle><jtitle>Batteries & supercaps</jtitle><date>2023-12</date><risdate>2023</risdate><volume>6</volume><issue>12</issue><epage>n/a</epage><issn>2566-6223</issn><eissn>2566-6223</eissn><abstract>The Cover Feature illustrates the occurrence of cracks in the secondary active material particles in lithium‐ion battery electrodes upon their calendering. We used the Discrete Element Method with a Bonded‐Particle Model to simulate this process and predict the fracture of these secondary particles. More information can be found in the Research Article by A. A. Franco and co‐workers.</abstract><doi>10.1002/batt.202300525</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7362-7849</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2566-6223 |
ispartof | Batteries & supercaps, 2023-12, Vol.6 (12), p.n/a |
issn | 2566-6223 2566-6223 |
language | eng |
recordid | cdi_crossref_primary_10_1002_batt_202300525 |
source | Wiley Journals |
subjects | computer simulation discrete element method lithium-ion battery manufacturing secondary particle fracture synchrotron radiation X-ray nano tomography |
title | Cover Feature: Computational Model for Predicting Particle Fracture During Electrode Calendering (Batteries & Supercaps 12/2023) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T03%3A34%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cover%20Feature:%20Computational%20Model%20for%20Predicting%20Particle%20Fracture%20During%20Electrode%20Calendering%20(Batteries%20&%20Supercaps%2012/2023)&rft.jtitle=Batteries%20&%20supercaps&rft.au=Xu,%20Jiahui&rft.date=2023-12&rft.volume=6&rft.issue=12&rft.epage=n/a&rft.issn=2566-6223&rft.eissn=2566-6223&rft_id=info:doi/10.1002/batt.202300525&rft_dat=%3Cwiley_cross%3EBATT202300525%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |