Unravelling Charge Storage Mechanisms of Lithium, Sodium and Potassium into Graphene‐Coffee Waste Derived Hard Carbon Composites
Hard carbons are promising anode materials for lithium, sodium and potassium‐ion batteries attending to their low cost, simple processing technology and outstanding electrochemical performance. However, their complex structure and controversial carrier‐ion storage mechanisms makes difficult the pred...
Gespeichert in:
Veröffentlicht in: | Batteries & supercaps 2023-03, Vol.6 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Batteries & supercaps |
container_volume | 6 |
creator | Gómez‐Urbano, Juan Luis Leibing, Christian Jauregui, María Darlami‐Magar, Sandesh Saurel, Damien Carriazo, Daniel Balducci, Andrea |
description | Hard carbons are promising anode materials for lithium, sodium and potassium‐ion batteries attending to their low cost, simple processing technology and outstanding electrochemical performance. However, their complex structure and controversial carrier‐ion storage mechanisms makes difficult the prediction of their performance. Herein, we investigate the insertion storage mechanisms behind of three different alkali metal ions (lithium, sodium and potassium) into a hard carbon composite obtained by the pyrolysis of coffee waste and graphene oxide. The insertion/deinsertion processes have been monitored by galvanostatic intermittent titration technique and operando X‐Ray diffraction. Results reveal that alkaline metal ions follow an adsorption‐intercalation mechanism where the high potential region can be ascribed to the adsorption of the alkaline metal ions on the surface active sites, while slopping region arises from their intercalation between the pseudo‐graphitic micro‐crystallites. Moreover, the graphene‐coffee waste hard carbon exhibits a notorious capacity retention after 300 charge/discharge cycles in all the alkaline metals evaluated.
How the metal ions inserted: The insertion storage of lithium, sodium and potassium ions in a graphene‐biowaste derived hard carbon are studied by operando XRD and GITT techniques, revealing that alkaline metal ions follow an adsorption‐intercalation mechanism. Moreover, the hard composite shows a remarkable capacity retention upon cycling. |
doi_str_mv | 10.1002/batt.202200508 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_batt_202200508</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>BATT202200508</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3298-41a2b22ab67e050f30e8c5012759d863488634ca2a8cfb9b10026d483fb5ad573</originalsourceid><addsrcrecordid>eNqFkM1Kw0AUhQdRsNRuXc8D2DqZye-yRm2FikJbXIab5E4zkmTKzFjpTnwCn9EnMaGi7tzccy-c78I5hJx7bOIxxi9zcG7CGeeMBSw-IgMehOE45Fwc_9lPycjaZ9YBns8iIQbkfd0a2GFdq3ZD0wrMBunSaQOd3mNRQatsY6mWdKFcpV6aC7rUZacU2pI-agfW9pdqnaYzA9sKW_x8-0i1lIj0CaxDeo1G7bCkczAlTcHkuqWpbrbaKof2jJxIqC2OvnVI1rc3q3Q-XjzM7tLpYlwInsRj3wOecw55GGGXUQqGcREwj0dBUsah8ON-FMAhLmSe5H0tYenHQuYBlEEkhmRy-FsYba1BmW2NasDsM49lvTvrS8x-SuyA5AC8qhr3_7izq-lq9ct-AboUeCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Unravelling Charge Storage Mechanisms of Lithium, Sodium and Potassium into Graphene‐Coffee Waste Derived Hard Carbon Composites</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Gómez‐Urbano, Juan Luis ; Leibing, Christian ; Jauregui, María ; Darlami‐Magar, Sandesh ; Saurel, Damien ; Carriazo, Daniel ; Balducci, Andrea</creator><creatorcontrib>Gómez‐Urbano, Juan Luis ; Leibing, Christian ; Jauregui, María ; Darlami‐Magar, Sandesh ; Saurel, Damien ; Carriazo, Daniel ; Balducci, Andrea</creatorcontrib><description>Hard carbons are promising anode materials for lithium, sodium and potassium‐ion batteries attending to their low cost, simple processing technology and outstanding electrochemical performance. However, their complex structure and controversial carrier‐ion storage mechanisms makes difficult the prediction of their performance. Herein, we investigate the insertion storage mechanisms behind of three different alkali metal ions (lithium, sodium and potassium) into a hard carbon composite obtained by the pyrolysis of coffee waste and graphene oxide. The insertion/deinsertion processes have been monitored by galvanostatic intermittent titration technique and operando X‐Ray diffraction. Results reveal that alkaline metal ions follow an adsorption‐intercalation mechanism where the high potential region can be ascribed to the adsorption of the alkaline metal ions on the surface active sites, while slopping region arises from their intercalation between the pseudo‐graphitic micro‐crystallites. Moreover, the graphene‐coffee waste hard carbon exhibits a notorious capacity retention after 300 charge/discharge cycles in all the alkaline metals evaluated.
How the metal ions inserted: The insertion storage of lithium, sodium and potassium ions in a graphene‐biowaste derived hard carbon are studied by operando XRD and GITT techniques, revealing that alkaline metal ions follow an adsorption‐intercalation mechanism. Moreover, the hard composite shows a remarkable capacity retention upon cycling.</description><identifier>ISSN: 2566-6223</identifier><identifier>EISSN: 2566-6223</identifier><identifier>DOI: 10.1002/batt.202200508</identifier><language>eng</language><subject>biowaste ; graphene ; lithium ; operando XRD ; potassium ; sodium</subject><ispartof>Batteries & supercaps, 2023-03, Vol.6 (3), p.n/a</ispartof><rights>2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3298-41a2b22ab67e050f30e8c5012759d863488634ca2a8cfb9b10026d483fb5ad573</citedby><cites>FETCH-LOGICAL-c3298-41a2b22ab67e050f30e8c5012759d863488634ca2a8cfb9b10026d483fb5ad573</cites><orcidid>0000-0002-2887-8312</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbatt.202200508$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbatt.202200508$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Gómez‐Urbano, Juan Luis</creatorcontrib><creatorcontrib>Leibing, Christian</creatorcontrib><creatorcontrib>Jauregui, María</creatorcontrib><creatorcontrib>Darlami‐Magar, Sandesh</creatorcontrib><creatorcontrib>Saurel, Damien</creatorcontrib><creatorcontrib>Carriazo, Daniel</creatorcontrib><creatorcontrib>Balducci, Andrea</creatorcontrib><title>Unravelling Charge Storage Mechanisms of Lithium, Sodium and Potassium into Graphene‐Coffee Waste Derived Hard Carbon Composites</title><title>Batteries & supercaps</title><description>Hard carbons are promising anode materials for lithium, sodium and potassium‐ion batteries attending to their low cost, simple processing technology and outstanding electrochemical performance. However, their complex structure and controversial carrier‐ion storage mechanisms makes difficult the prediction of their performance. Herein, we investigate the insertion storage mechanisms behind of three different alkali metal ions (lithium, sodium and potassium) into a hard carbon composite obtained by the pyrolysis of coffee waste and graphene oxide. The insertion/deinsertion processes have been monitored by galvanostatic intermittent titration technique and operando X‐Ray diffraction. Results reveal that alkaline metal ions follow an adsorption‐intercalation mechanism where the high potential region can be ascribed to the adsorption of the alkaline metal ions on the surface active sites, while slopping region arises from their intercalation between the pseudo‐graphitic micro‐crystallites. Moreover, the graphene‐coffee waste hard carbon exhibits a notorious capacity retention after 300 charge/discharge cycles in all the alkaline metals evaluated.
How the metal ions inserted: The insertion storage of lithium, sodium and potassium ions in a graphene‐biowaste derived hard carbon are studied by operando XRD and GITT techniques, revealing that alkaline metal ions follow an adsorption‐intercalation mechanism. Moreover, the hard composite shows a remarkable capacity retention upon cycling.</description><subject>biowaste</subject><subject>graphene</subject><subject>lithium</subject><subject>operando XRD</subject><subject>potassium</subject><subject>sodium</subject><issn>2566-6223</issn><issn>2566-6223</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkM1Kw0AUhQdRsNRuXc8D2DqZye-yRm2FikJbXIab5E4zkmTKzFjpTnwCn9EnMaGi7tzccy-c78I5hJx7bOIxxi9zcG7CGeeMBSw-IgMehOE45Fwc_9lPycjaZ9YBns8iIQbkfd0a2GFdq3ZD0wrMBunSaQOd3mNRQatsY6mWdKFcpV6aC7rUZacU2pI-agfW9pdqnaYzA9sKW_x8-0i1lIj0CaxDeo1G7bCkczAlTcHkuqWpbrbaKof2jJxIqC2OvnVI1rc3q3Q-XjzM7tLpYlwInsRj3wOecw55GGGXUQqGcREwj0dBUsah8ON-FMAhLmSe5H0tYenHQuYBlEEkhmRy-FsYba1BmW2NasDsM49lvTvrS8x-SuyA5AC8qhr3_7izq-lq9ct-AboUeCI</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Gómez‐Urbano, Juan Luis</creator><creator>Leibing, Christian</creator><creator>Jauregui, María</creator><creator>Darlami‐Magar, Sandesh</creator><creator>Saurel, Damien</creator><creator>Carriazo, Daniel</creator><creator>Balducci, Andrea</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2887-8312</orcidid></search><sort><creationdate>202303</creationdate><title>Unravelling Charge Storage Mechanisms of Lithium, Sodium and Potassium into Graphene‐Coffee Waste Derived Hard Carbon Composites</title><author>Gómez‐Urbano, Juan Luis ; Leibing, Christian ; Jauregui, María ; Darlami‐Magar, Sandesh ; Saurel, Damien ; Carriazo, Daniel ; Balducci, Andrea</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3298-41a2b22ab67e050f30e8c5012759d863488634ca2a8cfb9b10026d483fb5ad573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>biowaste</topic><topic>graphene</topic><topic>lithium</topic><topic>operando XRD</topic><topic>potassium</topic><topic>sodium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez‐Urbano, Juan Luis</creatorcontrib><creatorcontrib>Leibing, Christian</creatorcontrib><creatorcontrib>Jauregui, María</creatorcontrib><creatorcontrib>Darlami‐Magar, Sandesh</creatorcontrib><creatorcontrib>Saurel, Damien</creatorcontrib><creatorcontrib>Carriazo, Daniel</creatorcontrib><creatorcontrib>Balducci, Andrea</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>Batteries & supercaps</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez‐Urbano, Juan Luis</au><au>Leibing, Christian</au><au>Jauregui, María</au><au>Darlami‐Magar, Sandesh</au><au>Saurel, Damien</au><au>Carriazo, Daniel</au><au>Balducci, Andrea</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unravelling Charge Storage Mechanisms of Lithium, Sodium and Potassium into Graphene‐Coffee Waste Derived Hard Carbon Composites</atitle><jtitle>Batteries & supercaps</jtitle><date>2023-03</date><risdate>2023</risdate><volume>6</volume><issue>3</issue><epage>n/a</epage><issn>2566-6223</issn><eissn>2566-6223</eissn><abstract>Hard carbons are promising anode materials for lithium, sodium and potassium‐ion batteries attending to their low cost, simple processing technology and outstanding electrochemical performance. However, their complex structure and controversial carrier‐ion storage mechanisms makes difficult the prediction of their performance. Herein, we investigate the insertion storage mechanisms behind of three different alkali metal ions (lithium, sodium and potassium) into a hard carbon composite obtained by the pyrolysis of coffee waste and graphene oxide. The insertion/deinsertion processes have been monitored by galvanostatic intermittent titration technique and operando X‐Ray diffraction. Results reveal that alkaline metal ions follow an adsorption‐intercalation mechanism where the high potential region can be ascribed to the adsorption of the alkaline metal ions on the surface active sites, while slopping region arises from their intercalation between the pseudo‐graphitic micro‐crystallites. Moreover, the graphene‐coffee waste hard carbon exhibits a notorious capacity retention after 300 charge/discharge cycles in all the alkaline metals evaluated.
How the metal ions inserted: The insertion storage of lithium, sodium and potassium ions in a graphene‐biowaste derived hard carbon are studied by operando XRD and GITT techniques, revealing that alkaline metal ions follow an adsorption‐intercalation mechanism. Moreover, the hard composite shows a remarkable capacity retention upon cycling.</abstract><doi>10.1002/batt.202200508</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2887-8312</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2566-6223 |
ispartof | Batteries & supercaps, 2023-03, Vol.6 (3), p.n/a |
issn | 2566-6223 2566-6223 |
language | eng |
recordid | cdi_crossref_primary_10_1002_batt_202200508 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | biowaste graphene lithium operando XRD potassium sodium |
title | Unravelling Charge Storage Mechanisms of Lithium, Sodium and Potassium into Graphene‐Coffee Waste Derived Hard Carbon Composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A03%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unravelling%20Charge%20Storage%20Mechanisms%20of%20Lithium,%20Sodium%20and%20Potassium%20into%20Graphene%E2%80%90Coffee%20Waste%20Derived%20Hard%20Carbon%20Composites&rft.jtitle=Batteries%20&%20supercaps&rft.au=G%C3%B3mez%E2%80%90Urbano,%20Juan%20Luis&rft.date=2023-03&rft.volume=6&rft.issue=3&rft.epage=n/a&rft.issn=2566-6223&rft.eissn=2566-6223&rft_id=info:doi/10.1002/batt.202200508&rft_dat=%3Cwiley_cross%3EBATT202200508%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |