CO 2 bubble nucleation in polystyrene: Experimental and modeling studies

Polymer foams are used extensively in a variety of applications. A firm understanding of bubble nucleation is vital to predict foam properties based on process conditions. However, a number of theoretical and experimental challenges have thus far limited progress in this area. We propose the use of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2012-08, Vol.125 (3), p.2170-2186
Hauptverfasser: Guo, Zhihua, Burley, Adam C., Koelling, Kurt W., Kusaka, Isamu, Lee, L. James, Tomasko, David L.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2186
container_issue 3
container_start_page 2170
container_title Journal of applied polymer science
container_volume 125
creator Guo, Zhihua
Burley, Adam C.
Koelling, Kurt W.
Kusaka, Isamu
Lee, L. James
Tomasko, David L.
description Polymer foams are used extensively in a variety of applications. A firm understanding of bubble nucleation is vital to predict foam properties based on process conditions. However, a number of theoretical and experimental challenges have thus far limited progress in this area. We propose the use of a scaling theory to connect nucleation behavior to well understood bulk phase behavior of polystyrene‐CO 2 systems, which can be predicted by equations of state, such as the Sanchez–Lacombe equation of state. Scaling theory of nucleation asserts that when the reversible work of critical nucleus formation is properly normalized and plotted against the normalized degree of supersaturation, the resulting scaling curve is insensitive to temperature and the materials being used. Once the form of the scaling function is known, it can be used to predict the nucleation barrier knowing only the initial foaming conditions and calculating only bulk thermodynamic values. Using an extension of diffuse interface theory, we determined the slope of the scaling curve near saturation. This initial slope allows us to constrain the scaling function for better predictions of the reversible work. We also performed a series of experiments to help verify the accuracy of the scaling theory. The scaled free energy barriers determined from our experiments are consistent with the scaling function so constructed, and our theoretical results qualitatively agree with those found previously. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
doi_str_mv 10.1002/app.36422
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_app_36422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_app_36422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c144t-44e847c048358622386f65af9558e8fcb23005085c0b879736bd12e10c8c59eb3</originalsourceid><addsrcrecordid>eNot0EtLxDAUBeAgCtbRhf8gWxcdb55N3UkZZ4SB2ei6JOmtVDJpaVqw_976WJ3FgcPhI-SewZYB8Ec7DFuhJecXJGNQFrnU3FySbO1YbspSXZOblD4BGFOgM3KoTpRTNzsXkMbZB7RT10faRTr0YUnTMmLEJ7r7GnDszhgnG6iNDT33DYYuftA0zU2H6ZZctTYkvPvPDXl_2b1Vh_x42r9Wz8fcMymnXEo0svAgjVBGcy6MbrWybamUQdN6xwWAAqM8OFOUhdCuYRwZeONViU5syMPfrh_7lEZs62H9ZcelZlD_ENQrQf1LIL4B6DdN6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>CO 2 bubble nucleation in polystyrene: Experimental and modeling studies</title><source>Wiley Journals</source><creator>Guo, Zhihua ; Burley, Adam C. ; Koelling, Kurt W. ; Kusaka, Isamu ; Lee, L. James ; Tomasko, David L.</creator><creatorcontrib>Guo, Zhihua ; Burley, Adam C. ; Koelling, Kurt W. ; Kusaka, Isamu ; Lee, L. James ; Tomasko, David L.</creatorcontrib><description>Polymer foams are used extensively in a variety of applications. A firm understanding of bubble nucleation is vital to predict foam properties based on process conditions. However, a number of theoretical and experimental challenges have thus far limited progress in this area. We propose the use of a scaling theory to connect nucleation behavior to well understood bulk phase behavior of polystyrene‐CO 2 systems, which can be predicted by equations of state, such as the Sanchez–Lacombe equation of state. Scaling theory of nucleation asserts that when the reversible work of critical nucleus formation is properly normalized and plotted against the normalized degree of supersaturation, the resulting scaling curve is insensitive to temperature and the materials being used. Once the form of the scaling function is known, it can be used to predict the nucleation barrier knowing only the initial foaming conditions and calculating only bulk thermodynamic values. Using an extension of diffuse interface theory, we determined the slope of the scaling curve near saturation. This initial slope allows us to constrain the scaling function for better predictions of the reversible work. We also performed a series of experiments to help verify the accuracy of the scaling theory. The scaled free energy barriers determined from our experiments are consistent with the scaling function so constructed, and our theoretical results qualitatively agree with those found previously. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.36422</identifier><language>eng</language><ispartof>Journal of applied polymer science, 2012-08, Vol.125 (3), p.2170-2186</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c144t-44e847c048358622386f65af9558e8fcb23005085c0b879736bd12e10c8c59eb3</citedby><cites>FETCH-LOGICAL-c144t-44e847c048358622386f65af9558e8fcb23005085c0b879736bd12e10c8c59eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Guo, Zhihua</creatorcontrib><creatorcontrib>Burley, Adam C.</creatorcontrib><creatorcontrib>Koelling, Kurt W.</creatorcontrib><creatorcontrib>Kusaka, Isamu</creatorcontrib><creatorcontrib>Lee, L. James</creatorcontrib><creatorcontrib>Tomasko, David L.</creatorcontrib><title>CO 2 bubble nucleation in polystyrene: Experimental and modeling studies</title><title>Journal of applied polymer science</title><description>Polymer foams are used extensively in a variety of applications. A firm understanding of bubble nucleation is vital to predict foam properties based on process conditions. However, a number of theoretical and experimental challenges have thus far limited progress in this area. We propose the use of a scaling theory to connect nucleation behavior to well understood bulk phase behavior of polystyrene‐CO 2 systems, which can be predicted by equations of state, such as the Sanchez–Lacombe equation of state. Scaling theory of nucleation asserts that when the reversible work of critical nucleus formation is properly normalized and plotted against the normalized degree of supersaturation, the resulting scaling curve is insensitive to temperature and the materials being used. Once the form of the scaling function is known, it can be used to predict the nucleation barrier knowing only the initial foaming conditions and calculating only bulk thermodynamic values. Using an extension of diffuse interface theory, we determined the slope of the scaling curve near saturation. This initial slope allows us to constrain the scaling function for better predictions of the reversible work. We also performed a series of experiments to help verify the accuracy of the scaling theory. The scaled free energy barriers determined from our experiments are consistent with the scaling function so constructed, and our theoretical results qualitatively agree with those found previously. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</description><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNot0EtLxDAUBeAgCtbRhf8gWxcdb55N3UkZZ4SB2ei6JOmtVDJpaVqw_976WJ3FgcPhI-SewZYB8Ec7DFuhJecXJGNQFrnU3FySbO1YbspSXZOblD4BGFOgM3KoTpRTNzsXkMbZB7RT10faRTr0YUnTMmLEJ7r7GnDszhgnG6iNDT33DYYuftA0zU2H6ZZctTYkvPvPDXl_2b1Vh_x42r9Wz8fcMymnXEo0svAgjVBGcy6MbrWybamUQdN6xwWAAqM8OFOUhdCuYRwZeONViU5syMPfrh_7lEZs62H9ZcelZlD_ENQrQf1LIL4B6DdN6w</recordid><startdate>20120805</startdate><enddate>20120805</enddate><creator>Guo, Zhihua</creator><creator>Burley, Adam C.</creator><creator>Koelling, Kurt W.</creator><creator>Kusaka, Isamu</creator><creator>Lee, L. James</creator><creator>Tomasko, David L.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120805</creationdate><title>CO 2 bubble nucleation in polystyrene: Experimental and modeling studies</title><author>Guo, Zhihua ; Burley, Adam C. ; Koelling, Kurt W. ; Kusaka, Isamu ; Lee, L. James ; Tomasko, David L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c144t-44e847c048358622386f65af9558e8fcb23005085c0b879736bd12e10c8c59eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Zhihua</creatorcontrib><creatorcontrib>Burley, Adam C.</creatorcontrib><creatorcontrib>Koelling, Kurt W.</creatorcontrib><creatorcontrib>Kusaka, Isamu</creatorcontrib><creatorcontrib>Lee, L. James</creatorcontrib><creatorcontrib>Tomasko, David L.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Zhihua</au><au>Burley, Adam C.</au><au>Koelling, Kurt W.</au><au>Kusaka, Isamu</au><au>Lee, L. James</au><au>Tomasko, David L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>CO 2 bubble nucleation in polystyrene: Experimental and modeling studies</atitle><jtitle>Journal of applied polymer science</jtitle><date>2012-08-05</date><risdate>2012</risdate><volume>125</volume><issue>3</issue><spage>2170</spage><epage>2186</epage><pages>2170-2186</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><abstract>Polymer foams are used extensively in a variety of applications. A firm understanding of bubble nucleation is vital to predict foam properties based on process conditions. However, a number of theoretical and experimental challenges have thus far limited progress in this area. We propose the use of a scaling theory to connect nucleation behavior to well understood bulk phase behavior of polystyrene‐CO 2 systems, which can be predicted by equations of state, such as the Sanchez–Lacombe equation of state. Scaling theory of nucleation asserts that when the reversible work of critical nucleus formation is properly normalized and plotted against the normalized degree of supersaturation, the resulting scaling curve is insensitive to temperature and the materials being used. Once the form of the scaling function is known, it can be used to predict the nucleation barrier knowing only the initial foaming conditions and calculating only bulk thermodynamic values. Using an extension of diffuse interface theory, we determined the slope of the scaling curve near saturation. This initial slope allows us to constrain the scaling function for better predictions of the reversible work. We also performed a series of experiments to help verify the accuracy of the scaling theory. The scaled free energy barriers determined from our experiments are consistent with the scaling function so constructed, and our theoretical results qualitatively agree with those found previously. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012</abstract><doi>10.1002/app.36422</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2012-08, Vol.125 (3), p.2170-2186
issn 0021-8995
1097-4628
language eng
recordid cdi_crossref_primary_10_1002_app_36422
source Wiley Journals
title CO 2 bubble nucleation in polystyrene: Experimental and modeling studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=CO%202%20bubble%20nucleation%20in%20polystyrene:%20Experimental%20and%20modeling%20studies&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Guo,%20Zhihua&rft.date=2012-08-05&rft.volume=125&rft.issue=3&rft.spage=2170&rft.epage=2186&rft.pages=2170-2186&rft.issn=0021-8995&rft.eissn=1097-4628&rft_id=info:doi/10.1002/app.36422&rft_dat=%3Ccrossref%3E10_1002_app_36422%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true