Structure and reaction mechanism for the monoacid diol polyester from caprolactone and 2,2′-bis(hydroxymethyl)propionic acid: NMR and melting-point evidence

The product distribution in the synthesis of acidic hydroxypolyesters from a 6/1 mol ratio of caprolactone and 2,2′‐bis(hydroxymethyl)propionic acid (DMPA) changes with reaction time and temperature. 13C‐nuclear magnetic resonance (NMR) signals were identified that are specific for all the possible...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2001-11, Vol.82 (9), p.2217-2226
Hauptverfasser: Simms, J. A., McCord, E. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2226
container_issue 9
container_start_page 2217
container_title Journal of applied polymer science
container_volume 82
creator Simms, J. A.
McCord, E. F.
description The product distribution in the synthesis of acidic hydroxypolyesters from a 6/1 mol ratio of caprolactone and 2,2′‐bis(hydroxymethyl)propionic acid (DMPA) changes with reaction time and temperature. 13C‐nuclear magnetic resonance (NMR) signals were identified that are specific for all the possible substitution products around the quaternary carbon in the DMPA. This allows quantitative determination of the six different species that are present. NMR studies showed that over one‐half of the product is substituted on only one of the DMPA hydroxyls. The residual DMPA concentration increases at times and temperatures higher than those required to just complete caprolactone conversion because of equilibration of the kinetic product. All process conditions produced polyesters with two melting points. This suggests that the monosubstituted and disubstituted families of oligomers which are present are not completely miscible with one another. Polyester melting points increase as reaction time and temperature increase. This indicates that the degree of polymerization of the polycaprolactone arms increases as the severity of the preparative condition increases. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2217–2226, 2001
doi_str_mv 10.1002/app.2069
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_app_2069</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_W5HZPQ37_0</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3259-328d90b14162f3e6f4940b7b0c9cad3a521736c1a730e2a98a0d1f2a0cbb38b73</originalsourceid><addsrcrecordid>eNp1kMlOHDEQQK0oSJkAUj7BhxyIlIayPb04N4TCIrEMS4SUi1XtdmecdNstu1n6xpfwEXwSX0IPMyInTnWoV6-kR8gXBtsMgO9g121zyOQHMmEg82Sa8eIjmYwrlhRSpp_I5xj_AjCWQjYhj5d9uNH9TTAUXUWDQd1b72hr9BydjS2tfaD93NDWO4_aVrSyvqGdbwYTexNoHXxLNXbBN-Otd0sR_86fH56S0sat-VAFfz-0pp8PzbeR68YHVtOF7Ac9Pbl4PWhN01v3J-m8dT01t7YyTpsNslZjE83maq6TX_s_r_YOk-Ozg6O93eNEC57KRPCiklCyKct4LUxWT-UUyrwELTVWAlPOcpFphrkAw1EWCBWrOYIuS1GUuVgnW0uvDj7GYGrVBdtiGBQDteiqxq5q0XVEvy7RDqPGpg7otI3_eQaFkNmIJUvszjZmeFendmezlXbF27Hq_RuP4Z_KcpGn6vr0QF2nh79n5yJXIF4AYYGZXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Structure and reaction mechanism for the monoacid diol polyester from caprolactone and 2,2′-bis(hydroxymethyl)propionic acid: NMR and melting-point evidence</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Simms, J. A. ; McCord, E. F.</creator><creatorcontrib>Simms, J. A. ; McCord, E. F.</creatorcontrib><description>The product distribution in the synthesis of acidic hydroxypolyesters from a 6/1 mol ratio of caprolactone and 2,2′‐bis(hydroxymethyl)propionic acid (DMPA) changes with reaction time and temperature. 13C‐nuclear magnetic resonance (NMR) signals were identified that are specific for all the possible substitution products around the quaternary carbon in the DMPA. This allows quantitative determination of the six different species that are present. NMR studies showed that over one‐half of the product is substituted on only one of the DMPA hydroxyls. The residual DMPA concentration increases at times and temperatures higher than those required to just complete caprolactone conversion because of equilibration of the kinetic product. All process conditions produced polyesters with two melting points. This suggests that the monosubstituted and disubstituted families of oligomers which are present are not completely miscible with one another. Polyester melting points increase as reaction time and temperature increase. This indicates that the degree of polymerization of the polycaprolactone arms increases as the severity of the preparative condition increases. © 2001 John Wiley &amp; Sons, Inc. J Appl Polym Sci 82: 2217–2226, 2001</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.2069</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>New York: John Wiley &amp; Sons, Inc</publisher><subject>Applied sciences ; Exact sciences and technology ; kinetics(polym.) ; NMR ; oligomers ; Organic polymers ; Physicochemistry of polymers ; polyesters ; Polymerization ; Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><ispartof>Journal of applied polymer science, 2001-11, Vol.82 (9), p.2217-2226</ispartof><rights>Copyright © 2001 John Wiley &amp; Sons, Inc.</rights><rights>2001 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3259-328d90b14162f3e6f4940b7b0c9cad3a521736c1a730e2a98a0d1f2a0cbb38b73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.2069$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.2069$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1108396$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Simms, J. A.</creatorcontrib><creatorcontrib>McCord, E. F.</creatorcontrib><title>Structure and reaction mechanism for the monoacid diol polyester from caprolactone and 2,2′-bis(hydroxymethyl)propionic acid: NMR and melting-point evidence</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>The product distribution in the synthesis of acidic hydroxypolyesters from a 6/1 mol ratio of caprolactone and 2,2′‐bis(hydroxymethyl)propionic acid (DMPA) changes with reaction time and temperature. 13C‐nuclear magnetic resonance (NMR) signals were identified that are specific for all the possible substitution products around the quaternary carbon in the DMPA. This allows quantitative determination of the six different species that are present. NMR studies showed that over one‐half of the product is substituted on only one of the DMPA hydroxyls. The residual DMPA concentration increases at times and temperatures higher than those required to just complete caprolactone conversion because of equilibration of the kinetic product. All process conditions produced polyesters with two melting points. This suggests that the monosubstituted and disubstituted families of oligomers which are present are not completely miscible with one another. Polyester melting points increase as reaction time and temperature increase. This indicates that the degree of polymerization of the polycaprolactone arms increases as the severity of the preparative condition increases. © 2001 John Wiley &amp; Sons, Inc. J Appl Polym Sci 82: 2217–2226, 2001</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>kinetics(polym.)</subject><subject>NMR</subject><subject>oligomers</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>polyesters</subject><subject>Polymerization</subject><subject>Preparation, kinetics, thermodynamics, mechanism and catalysts</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOHDEQQK0oSJkAUj7BhxyIlIayPb04N4TCIrEMS4SUi1XtdmecdNstu1n6xpfwEXwSX0IPMyInTnWoV6-kR8gXBtsMgO9g121zyOQHMmEg82Sa8eIjmYwrlhRSpp_I5xj_AjCWQjYhj5d9uNH9TTAUXUWDQd1b72hr9BydjS2tfaD93NDWO4_aVrSyvqGdbwYTexNoHXxLNXbBN-Otd0sR_86fH56S0sat-VAFfz-0pp8PzbeR68YHVtOF7Ac9Pbl4PWhN01v3J-m8dT01t7YyTpsNslZjE83maq6TX_s_r_YOk-Ozg6O93eNEC57KRPCiklCyKct4LUxWT-UUyrwELTVWAlPOcpFphrkAw1EWCBWrOYIuS1GUuVgnW0uvDj7GYGrVBdtiGBQDteiqxq5q0XVEvy7RDqPGpg7otI3_eQaFkNmIJUvszjZmeFendmezlXbF27Hq_RuP4Z_KcpGn6vr0QF2nh79n5yJXIF4AYYGZXA</recordid><startdate>20011128</startdate><enddate>20011128</enddate><creator>Simms, J. A.</creator><creator>McCord, E. F.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20011128</creationdate><title>Structure and reaction mechanism for the monoacid diol polyester from caprolactone and 2,2′-bis(hydroxymethyl)propionic acid: NMR and melting-point evidence</title><author>Simms, J. A. ; McCord, E. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3259-328d90b14162f3e6f4940b7b0c9cad3a521736c1a730e2a98a0d1f2a0cbb38b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>kinetics(polym.)</topic><topic>NMR</topic><topic>oligomers</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>polyesters</topic><topic>Polymerization</topic><topic>Preparation, kinetics, thermodynamics, mechanism and catalysts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simms, J. A.</creatorcontrib><creatorcontrib>McCord, E. F.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simms, J. A.</au><au>McCord, E. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and reaction mechanism for the monoacid diol polyester from caprolactone and 2,2′-bis(hydroxymethyl)propionic acid: NMR and melting-point evidence</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2001-11-28</date><risdate>2001</risdate><volume>82</volume><issue>9</issue><spage>2217</spage><epage>2226</epage><pages>2217-2226</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>The product distribution in the synthesis of acidic hydroxypolyesters from a 6/1 mol ratio of caprolactone and 2,2′‐bis(hydroxymethyl)propionic acid (DMPA) changes with reaction time and temperature. 13C‐nuclear magnetic resonance (NMR) signals were identified that are specific for all the possible substitution products around the quaternary carbon in the DMPA. This allows quantitative determination of the six different species that are present. NMR studies showed that over one‐half of the product is substituted on only one of the DMPA hydroxyls. The residual DMPA concentration increases at times and temperatures higher than those required to just complete caprolactone conversion because of equilibration of the kinetic product. All process conditions produced polyesters with two melting points. This suggests that the monosubstituted and disubstituted families of oligomers which are present are not completely miscible with one another. Polyester melting points increase as reaction time and temperature increase. This indicates that the degree of polymerization of the polycaprolactone arms increases as the severity of the preparative condition increases. © 2001 John Wiley &amp; Sons, Inc. J Appl Polym Sci 82: 2217–2226, 2001</abstract><cop>New York</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/app.2069</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2001-11, Vol.82 (9), p.2217-2226
issn 0021-8995
1097-4628
language eng
recordid cdi_crossref_primary_10_1002_app_2069
source Wiley Online Library Journals Frontfile Complete
subjects Applied sciences
Exact sciences and technology
kinetics(polym.)
NMR
oligomers
Organic polymers
Physicochemistry of polymers
polyesters
Polymerization
Preparation, kinetics, thermodynamics, mechanism and catalysts
title Structure and reaction mechanism for the monoacid diol polyester from caprolactone and 2,2′-bis(hydroxymethyl)propionic acid: NMR and melting-point evidence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T07%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20reaction%20mechanism%20for%20the%20monoacid%20diol%20polyester%20from%20caprolactone%20and%202,2%E2%80%B2-bis(hydroxymethyl)propionic%20acid:%20NMR%20and%20melting-point%20evidence&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Simms,%20J.%20A.&rft.date=2001-11-28&rft.volume=82&rft.issue=9&rft.spage=2217&rft.epage=2226&rft.pages=2217-2226&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.2069&rft_dat=%3Cistex_cross%3Eark_67375_WNG_W5HZPQ37_0%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true