The fibrillar structure of cellulosic man-made fibers spun from different solvent systems
The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐an...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 1988-06, Vol.35 (8), p.1987-2000 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2000 |
---|---|
container_issue | 8 |
container_start_page | 1987 |
container_title | Journal of applied polymer science |
container_volume | 35 |
creator | Lenz, J. Schurz, J. Wrentschur, E. |
description | The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence. |
doi_str_mv | 10.1002/app.1988.070350801 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_app_1988_070350801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_K8MWDPST_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOKf_gKccvHbmR9O04GVsOsWpAyfDU0jTBKPpWpJW3X9vt8rw6OHjvbzP-8EDwDlGI4wQuZR1PcJZmo4QR5ShFOEDMMAo41GckPQQDLoSjtIsY8fgJIR3hDBmKBmA1-Wbhsbm3jonPQyNb1XTeg0rA5V2rnVVsAqWch2VsthVtQ8w1O0aGl-VsLDGaK_XDQyV-9zlJjS6DKfgyEgX9NlvDsHLzfVychvNn2Z3k_E8UjRhOFKJTvOMINMdz2NpsE5iQpiKMc0oJZqRjHKlEUklL0xBWE5RjGLOWZJnVNMhIP2u8lUIXhtRe1tKvxEYia0c0ckRWzliL6eDLnqolkFJZ7xcKxv2JOeE413tqq99Wac3_xgW48Xi75eox21n5HuPS_8hEk45E6vHmbhPH1bTxfNSTOkP40OGMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</title><source>Access via Wiley Online Library</source><creator>Lenz, J. ; Schurz, J. ; Wrentschur, E.</creator><creatorcontrib>Lenz, J. ; Schurz, J. ; Wrentschur, E.</creatorcontrib><description>The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.1988.070350801</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 1988-06, Vol.35 (8), p.1987-2000</ispartof><rights>Copyright © 1988 John Wiley & Sons, Inc.</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</citedby><cites>FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.1988.070350801$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.1988.070350801$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=7727101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, J.</creatorcontrib><creatorcontrib>Schurz, J.</creatorcontrib><creatorcontrib>Wrentschur, E.</creatorcontrib><title>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOKf_gKccvHbmR9O04GVsOsWpAyfDU0jTBKPpWpJW3X9vt8rw6OHjvbzP-8EDwDlGI4wQuZR1PcJZmo4QR5ShFOEDMMAo41GckPQQDLoSjtIsY8fgJIR3hDBmKBmA1-Wbhsbm3jonPQyNb1XTeg0rA5V2rnVVsAqWch2VsthVtQ8w1O0aGl-VsLDGaK_XDQyV-9zlJjS6DKfgyEgX9NlvDsHLzfVychvNn2Z3k_E8UjRhOFKJTvOMINMdz2NpsE5iQpiKMc0oJZqRjHKlEUklL0xBWE5RjGLOWZJnVNMhIP2u8lUIXhtRe1tKvxEYia0c0ckRWzliL6eDLnqolkFJZ7xcKxv2JOeE413tqq99Wac3_xgW48Xi75eox21n5HuPS_8hEk45E6vHmbhPH1bTxfNSTOkP40OGMQ</recordid><startdate>19880605</startdate><enddate>19880605</enddate><creator>Lenz, J.</creator><creator>Schurz, J.</creator><creator>Wrentschur, E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19880605</creationdate><title>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</title><author>Lenz, J. ; Schurz, J. ; Wrentschur, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, J.</creatorcontrib><creatorcontrib>Schurz, J.</creatorcontrib><creatorcontrib>Wrentschur, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, J.</au><au>Schurz, J.</au><au>Wrentschur, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>1988-06-05</date><risdate>1988</risdate><volume>35</volume><issue>8</issue><spage>1987</spage><epage>2000</epage><pages>1987-2000</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.1988.070350801</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 1988-06, Vol.35 (8), p.1987-2000 |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_crossref_primary_10_1002_app_1988_070350801 |
source | Access via Wiley Online Library |
subjects | Applied sciences Exact sciences and technology Fibers and threads Forms of application and semi-finished materials Polymer industry, paints, wood Technology of polymers |
title | The fibrillar structure of cellulosic man-made fibers spun from different solvent systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fibrillar%20structure%20of%20cellulosic%20man-made%20fibers%20spun%20from%20different%20solvent%20systems&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Lenz,%20J.&rft.date=1988-06-05&rft.volume=35&rft.issue=8&rft.spage=1987&rft.epage=2000&rft.pages=1987-2000&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.1988.070350801&rft_dat=%3Cistex_cross%3Eark_67375_WNG_K8MWDPST_D%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |