The fibrillar structure of cellulosic man-made fibers spun from different solvent systems

The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 1988-06, Vol.35 (8), p.1987-2000
Hauptverfasser: Lenz, J., Schurz, J., Wrentschur, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2000
container_issue 8
container_start_page 1987
container_title Journal of applied polymer science
container_volume 35
creator Lenz, J.
Schurz, J.
Wrentschur, E.
description The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence.
doi_str_mv 10.1002/app.1988.070350801
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_app_1988_070350801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_K8MWDPST_D</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhoMoOKf_gKccvHbmR9O04GVsOsWpAyfDU0jTBKPpWpJW3X9vt8rw6OHjvbzP-8EDwDlGI4wQuZR1PcJZmo4QR5ShFOEDMMAo41GckPQQDLoSjtIsY8fgJIR3hDBmKBmA1-Wbhsbm3jonPQyNb1XTeg0rA5V2rnVVsAqWch2VsthVtQ8w1O0aGl-VsLDGaK_XDQyV-9zlJjS6DKfgyEgX9NlvDsHLzfVychvNn2Z3k_E8UjRhOFKJTvOMINMdz2NpsE5iQpiKMc0oJZqRjHKlEUklL0xBWE5RjGLOWZJnVNMhIP2u8lUIXhtRe1tKvxEYia0c0ckRWzliL6eDLnqolkFJZ7xcKxv2JOeE413tqq99Wac3_xgW48Xi75eox21n5HuPS_8hEk45E6vHmbhPH1bTxfNSTOkP40OGMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</title><source>Access via Wiley Online Library</source><creator>Lenz, J. ; Schurz, J. ; Wrentschur, E.</creator><creatorcontrib>Lenz, J. ; Schurz, J. ; Wrentschur, E.</creatorcontrib><description>The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.1988.070350801</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>New York: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Applied sciences ; Exact sciences and technology ; Fibers and threads ; Forms of application and semi-finished materials ; Polymer industry, paints, wood ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 1988-06, Vol.35 (8), p.1987-2000</ispartof><rights>Copyright © 1988 John Wiley &amp; Sons, Inc.</rights><rights>1988 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</citedby><cites>FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.1988.070350801$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.1988.070350801$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=7727101$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lenz, J.</creatorcontrib><creatorcontrib>Schurz, J.</creatorcontrib><creatorcontrib>Wrentschur, E.</creatorcontrib><title>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence.</description><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>Fibers and threads</subject><subject>Forms of application and semi-finished materials</subject><subject>Polymer industry, paints, wood</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1988</creationdate><recordtype>article</recordtype><recordid>eNqNkM9LwzAYhoMoOKf_gKccvHbmR9O04GVsOsWpAyfDU0jTBKPpWpJW3X9vt8rw6OHjvbzP-8EDwDlGI4wQuZR1PcJZmo4QR5ShFOEDMMAo41GckPQQDLoSjtIsY8fgJIR3hDBmKBmA1-Wbhsbm3jonPQyNb1XTeg0rA5V2rnVVsAqWch2VsthVtQ8w1O0aGl-VsLDGaK_XDQyV-9zlJjS6DKfgyEgX9NlvDsHLzfVychvNn2Z3k_E8UjRhOFKJTvOMINMdz2NpsE5iQpiKMc0oJZqRjHKlEUklL0xBWE5RjGLOWZJnVNMhIP2u8lUIXhtRe1tKvxEYia0c0ckRWzliL6eDLnqolkFJZ7xcKxv2JOeE413tqq99Wac3_xgW48Xi75eox21n5HuPS_8hEk45E6vHmbhPH1bTxfNSTOkP40OGMQ</recordid><startdate>19880605</startdate><enddate>19880605</enddate><creator>Lenz, J.</creator><creator>Schurz, J.</creator><creator>Wrentschur, E.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19880605</creationdate><title>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</title><author>Lenz, J. ; Schurz, J. ; Wrentschur, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3651-c6e8b920f9207b4af1e64225c4139332e52937ce028a7dfd25b304047756b93e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1988</creationdate><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>Fibers and threads</topic><topic>Forms of application and semi-finished materials</topic><topic>Polymer industry, paints, wood</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lenz, J.</creatorcontrib><creatorcontrib>Schurz, J.</creatorcontrib><creatorcontrib>Wrentschur, E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lenz, J.</au><au>Schurz, J.</au><au>Wrentschur, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The fibrillar structure of cellulosic man-made fibers spun from different solvent systems</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>1988-06-05</date><risdate>1988</risdate><volume>35</volume><issue>8</issue><spage>1987</spage><epage>2000</epage><pages>1987-2000</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>The development of new methods of spinning cellulosic fibers requires a better understanding of their fibrillar structure in order to explain their special physical properties. By means of transmission electron microscopy (TEM), light microscopy (LM), small‐angle X‐ray scattering (SAXS), and wide‐angle X‐ray diffraction (WAXD) it is shown that six different kinds of regenerated cellulosic fibers consist of uniform elementary fibrils composed of cellulose‐II crystals. Systematic distinctions between these fiber types are found with regard to the aggregation of the elementary fibrils to nonswelling bundles or clusters. The clusters differ from each other in diameter, length, and frequency of occurrence.</abstract><cop>New York</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><doi>10.1002/app.1988.070350801</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 1988-06, Vol.35 (8), p.1987-2000
issn 0021-8995
1097-4628
language eng
recordid cdi_crossref_primary_10_1002_app_1988_070350801
source Access via Wiley Online Library
subjects Applied sciences
Exact sciences and technology
Fibers and threads
Forms of application and semi-finished materials
Polymer industry, paints, wood
Technology of polymers
title The fibrillar structure of cellulosic man-made fibers spun from different solvent systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T09%3A07%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20fibrillar%20structure%20of%20cellulosic%20man-made%20fibers%20spun%20from%20different%20solvent%20systems&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Lenz,%20J.&rft.date=1988-06-05&rft.volume=35&rft.issue=8&rft.spage=1987&rft.epage=2000&rft.pages=1987-2000&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.1988.070350801&rft_dat=%3Cistex_cross%3Eark_67375_WNG_K8MWDPST_D%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true