Life-cycle toxicity of dibutyltin to the sheepshead minnow (Cyprinodon variegatus) and implications of the ubiquitous tributyltin impurity in test material
Dibutyltin (DBT) is used in the plastics polymerization process as a catalyst in polyvinyl chloride (PVC) products and is the primary degradation product of tributyltin (TBT), an antifoulant in marine paint. DBT and other organotin compounds make their way into the environment through antifoulants,...
Gespeichert in:
Veröffentlicht in: | Applied organometallic chemistry 2003-09, Vol.17 (9), p.653-661 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 661 |
---|---|
container_issue | 9 |
container_start_page | 653 |
container_title | Applied organometallic chemistry |
container_volume | 17 |
creator | Lytle, Thomas F. Manning, Charles S. Walker, William W. Lytle, Julia S. Page, David S. |
description | Dibutyltin (DBT) is used in the plastics polymerization process as a catalyst in polyvinyl chloride (PVC) products and is the primary degradation product of tributyltin (TBT), an antifoulant in marine paint. DBT and other organotin compounds make their way into the environment through antifoulants, PVC processing plants, and PVC products maintained in water and water‐handling systems. A flow‐through saltwater life‐cycle toxicity test was conducted to determine the chronic effect of DBT to the sheepshead minnow (Cyprinodon variegatus Lacepede), an estuarine species. Embryos were monitored through hatch, maturation, growth, and reproduction in DBT concentrations of 158, 286, 453, 887, and 1510 µg l−1. Progeny were monitored for survival as embryos and fry/juveniles, and growth for 30 days post‐isolation. Mean length of parental generation fish was significantly reduced on day 30 at DBT concentrations ≥887 µg l−1, setting the lowest observable effect concentration (LOEC) at 887 µg l−1 and the no observable effect concentration (NOEC) at 453 µg l−1. Fecundity, as egg viability, was significantly reduced at the LOEC. Survival of parental and progeny generation embryos and mean length, wet weight and dry weight of progeny generation juveniles were not significantly affected at concentrations ≤LOEC. TBT, a toxic impurity in DBT reversibly produced in DBT by the process of comproportionation, was also monitored throughout this study. Comparing measured levels of TBT in this study with levels exerting toxic effects in an earlier TBT life‐cycle study with C. variegatus suggests biological responses in this study were likely due to the TBT impurity and not to DBT alone. Results indicate that TBT impurity as low as 0.1% may have a significant influence on the perceived toxicity of DBT and that spontaneous production of TBT in DBT may be the major source of biological toxicity of DBT. Copyright © 2003 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/aoc.485 |
format | Article |
fullrecord | <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aoc_485</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_W2B701KX_N</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3275-f8b085eded27c3a56542cf9a5a3e3edbcb6206a17a34f9837ab5b0d374b2129e3</originalsourceid><addsrcrecordid>eNp1kMFu1DAQhi1EJZYW8Qq-IEAoZWLHcXIsKyioq_YCKjdr4jh0IBtvbYc2z8LLkiioPXGZkUafvl_zM_Yyh9McQLxHb0-LSj1hmxzqOgMt66dsA6KsMlGCesaex_gTAOoyLzbsz446l9nJ9o4nf0-W0sR9x1tqxjT1iYb5zNON4_HGucM8sOV7GgZ_x99sp0Ogwbd-4L8xkPuBaYxvOQ4tp_2hJ4uJ_BAX32IYG7odKfkx8hQe_TM6hiV2yXIx8T0mFwj7E3bUYR_di3_7mH379PHr9nO2uzr_sj3bZVYKrbKuaqBSrnWt0FaiKlUhbFejQumkaxvblAJKzDXKoqsrqbFRDbRSF43IRe3kMXu9em3wMQbXmfmtPYbJ5GCWTs3cqZk7nclXK3nAaLHvAg6W4iOuoCwkwMy9W7k76t30P505u9qu1mylKSZ3_0Bj-GVKLbUy15fn5lp80JBffDeX8i-9KJh2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Life-cycle toxicity of dibutyltin to the sheepshead minnow (Cyprinodon variegatus) and implications of the ubiquitous tributyltin impurity in test material</title><source>Wiley Online Library All Journals</source><creator>Lytle, Thomas F. ; Manning, Charles S. ; Walker, William W. ; Lytle, Julia S. ; Page, David S.</creator><creatorcontrib>Lytle, Thomas F. ; Manning, Charles S. ; Walker, William W. ; Lytle, Julia S. ; Page, David S.</creatorcontrib><description>Dibutyltin (DBT) is used in the plastics polymerization process as a catalyst in polyvinyl chloride (PVC) products and is the primary degradation product of tributyltin (TBT), an antifoulant in marine paint. DBT and other organotin compounds make their way into the environment through antifoulants, PVC processing plants, and PVC products maintained in water and water‐handling systems. A flow‐through saltwater life‐cycle toxicity test was conducted to determine the chronic effect of DBT to the sheepshead minnow (Cyprinodon variegatus Lacepede), an estuarine species. Embryos were monitored through hatch, maturation, growth, and reproduction in DBT concentrations of 158, 286, 453, 887, and 1510 µg l−1. Progeny were monitored for survival as embryos and fry/juveniles, and growth for 30 days post‐isolation. Mean length of parental generation fish was significantly reduced on day 30 at DBT concentrations ≥887 µg l−1, setting the lowest observable effect concentration (LOEC) at 887 µg l−1 and the no observable effect concentration (NOEC) at 453 µg l−1. Fecundity, as egg viability, was significantly reduced at the LOEC. Survival of parental and progeny generation embryos and mean length, wet weight and dry weight of progeny generation juveniles were not significantly affected at concentrations ≤LOEC. TBT, a toxic impurity in DBT reversibly produced in DBT by the process of comproportionation, was also monitored throughout this study. Comparing measured levels of TBT in this study with levels exerting toxic effects in an earlier TBT life‐cycle study with C. variegatus suggests biological responses in this study were likely due to the TBT impurity and not to DBT alone. Results indicate that TBT impurity as low as 0.1% may have a significant influence on the perceived toxicity of DBT and that spontaneous production of TBT in DBT may be the major source of biological toxicity of DBT. Copyright © 2003 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0268-2605</identifier><identifier>EISSN: 1099-0739</identifier><identifier>DOI: 10.1002/aoc.485</identifier><identifier>CODEN: AOCHEX</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Agnatha. Pisces ; Animal, plant and microbial ecology ; antifoulants ; Applied ecology ; Biological and medical sciences ; Cyprinodon variegatus ; dibutyltin ; Ecotoxicology, biological effects of pollution ; Effects of pollution and side effects of pesticides on vertebrates ; Fundamental and applied biological sciences. Psychology ; life-cycle toxicity ; PVC additives ; toxicant impurities ; tributyltin</subject><ispartof>Applied organometallic chemistry, 2003-09, Vol.17 (9), p.653-661</ispartof><rights>Copyright © 2003 John Wiley & Sons, Ltd.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3275-f8b085eded27c3a56542cf9a5a3e3edbcb6206a17a34f9837ab5b0d374b2129e3</citedby><cites>FETCH-LOGICAL-c3275-f8b085eded27c3a56542cf9a5a3e3edbcb6206a17a34f9837ab5b0d374b2129e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faoc.485$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faoc.485$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15064300$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lytle, Thomas F.</creatorcontrib><creatorcontrib>Manning, Charles S.</creatorcontrib><creatorcontrib>Walker, William W.</creatorcontrib><creatorcontrib>Lytle, Julia S.</creatorcontrib><creatorcontrib>Page, David S.</creatorcontrib><title>Life-cycle toxicity of dibutyltin to the sheepshead minnow (Cyprinodon variegatus) and implications of the ubiquitous tributyltin impurity in test material</title><title>Applied organometallic chemistry</title><addtitle>Appl. Organometal. Chem</addtitle><description>Dibutyltin (DBT) is used in the plastics polymerization process as a catalyst in polyvinyl chloride (PVC) products and is the primary degradation product of tributyltin (TBT), an antifoulant in marine paint. DBT and other organotin compounds make their way into the environment through antifoulants, PVC processing plants, and PVC products maintained in water and water‐handling systems. A flow‐through saltwater life‐cycle toxicity test was conducted to determine the chronic effect of DBT to the sheepshead minnow (Cyprinodon variegatus Lacepede), an estuarine species. Embryos were monitored through hatch, maturation, growth, and reproduction in DBT concentrations of 158, 286, 453, 887, and 1510 µg l−1. Progeny were monitored for survival as embryos and fry/juveniles, and growth for 30 days post‐isolation. Mean length of parental generation fish was significantly reduced on day 30 at DBT concentrations ≥887 µg l−1, setting the lowest observable effect concentration (LOEC) at 887 µg l−1 and the no observable effect concentration (NOEC) at 453 µg l−1. Fecundity, as egg viability, was significantly reduced at the LOEC. Survival of parental and progeny generation embryos and mean length, wet weight and dry weight of progeny generation juveniles were not significantly affected at concentrations ≤LOEC. TBT, a toxic impurity in DBT reversibly produced in DBT by the process of comproportionation, was also monitored throughout this study. Comparing measured levels of TBT in this study with levels exerting toxic effects in an earlier TBT life‐cycle study with C. variegatus suggests biological responses in this study were likely due to the TBT impurity and not to DBT alone. Results indicate that TBT impurity as low as 0.1% may have a significant influence on the perceived toxicity of DBT and that spontaneous production of TBT in DBT may be the major source of biological toxicity of DBT. Copyright © 2003 John Wiley & Sons, Ltd.</description><subject>Agnatha. Pisces</subject><subject>Animal, plant and microbial ecology</subject><subject>antifoulants</subject><subject>Applied ecology</subject><subject>Biological and medical sciences</subject><subject>Cyprinodon variegatus</subject><subject>dibutyltin</subject><subject>Ecotoxicology, biological effects of pollution</subject><subject>Effects of pollution and side effects of pesticides on vertebrates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>life-cycle toxicity</subject><subject>PVC additives</subject><subject>toxicant impurities</subject><subject>tributyltin</subject><issn>0268-2605</issn><issn>1099-0739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp1kMFu1DAQhi1EJZYW8Qq-IEAoZWLHcXIsKyioq_YCKjdr4jh0IBtvbYc2z8LLkiioPXGZkUafvl_zM_Yyh9McQLxHb0-LSj1hmxzqOgMt66dsA6KsMlGCesaex_gTAOoyLzbsz446l9nJ9o4nf0-W0sR9x1tqxjT1iYb5zNON4_HGucM8sOV7GgZ_x99sp0Ogwbd-4L8xkPuBaYxvOQ4tp_2hJ4uJ_BAX32IYG7odKfkx8hQe_TM6hiV2yXIx8T0mFwj7E3bUYR_di3_7mH379PHr9nO2uzr_sj3bZVYKrbKuaqBSrnWt0FaiKlUhbFejQumkaxvblAJKzDXKoqsrqbFRDbRSF43IRe3kMXu9em3wMQbXmfmtPYbJ5GCWTs3cqZk7nclXK3nAaLHvAg6W4iOuoCwkwMy9W7k76t30P505u9qu1mylKSZ3_0Bj-GVKLbUy15fn5lp80JBffDeX8i-9KJh2</recordid><startdate>200309</startdate><enddate>200309</enddate><creator>Lytle, Thomas F.</creator><creator>Manning, Charles S.</creator><creator>Walker, William W.</creator><creator>Lytle, Julia S.</creator><creator>Page, David S.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200309</creationdate><title>Life-cycle toxicity of dibutyltin to the sheepshead minnow (Cyprinodon variegatus) and implications of the ubiquitous tributyltin impurity in test material</title><author>Lytle, Thomas F. ; Manning, Charles S. ; Walker, William W. ; Lytle, Julia S. ; Page, David S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3275-f8b085eded27c3a56542cf9a5a3e3edbcb6206a17a34f9837ab5b0d374b2129e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Agnatha. Pisces</topic><topic>Animal, plant and microbial ecology</topic><topic>antifoulants</topic><topic>Applied ecology</topic><topic>Biological and medical sciences</topic><topic>Cyprinodon variegatus</topic><topic>dibutyltin</topic><topic>Ecotoxicology, biological effects of pollution</topic><topic>Effects of pollution and side effects of pesticides on vertebrates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>life-cycle toxicity</topic><topic>PVC additives</topic><topic>toxicant impurities</topic><topic>tributyltin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lytle, Thomas F.</creatorcontrib><creatorcontrib>Manning, Charles S.</creatorcontrib><creatorcontrib>Walker, William W.</creatorcontrib><creatorcontrib>Lytle, Julia S.</creatorcontrib><creatorcontrib>Page, David S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Applied organometallic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lytle, Thomas F.</au><au>Manning, Charles S.</au><au>Walker, William W.</au><au>Lytle, Julia S.</au><au>Page, David S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Life-cycle toxicity of dibutyltin to the sheepshead minnow (Cyprinodon variegatus) and implications of the ubiquitous tributyltin impurity in test material</atitle><jtitle>Applied organometallic chemistry</jtitle><addtitle>Appl. Organometal. Chem</addtitle><date>2003-09</date><risdate>2003</risdate><volume>17</volume><issue>9</issue><spage>653</spage><epage>661</epage><pages>653-661</pages><issn>0268-2605</issn><eissn>1099-0739</eissn><coden>AOCHEX</coden><abstract>Dibutyltin (DBT) is used in the plastics polymerization process as a catalyst in polyvinyl chloride (PVC) products and is the primary degradation product of tributyltin (TBT), an antifoulant in marine paint. DBT and other organotin compounds make their way into the environment through antifoulants, PVC processing plants, and PVC products maintained in water and water‐handling systems. A flow‐through saltwater life‐cycle toxicity test was conducted to determine the chronic effect of DBT to the sheepshead minnow (Cyprinodon variegatus Lacepede), an estuarine species. Embryos were monitored through hatch, maturation, growth, and reproduction in DBT concentrations of 158, 286, 453, 887, and 1510 µg l−1. Progeny were monitored for survival as embryos and fry/juveniles, and growth for 30 days post‐isolation. Mean length of parental generation fish was significantly reduced on day 30 at DBT concentrations ≥887 µg l−1, setting the lowest observable effect concentration (LOEC) at 887 µg l−1 and the no observable effect concentration (NOEC) at 453 µg l−1. Fecundity, as egg viability, was significantly reduced at the LOEC. Survival of parental and progeny generation embryos and mean length, wet weight and dry weight of progeny generation juveniles were not significantly affected at concentrations ≤LOEC. TBT, a toxic impurity in DBT reversibly produced in DBT by the process of comproportionation, was also monitored throughout this study. Comparing measured levels of TBT in this study with levels exerting toxic effects in an earlier TBT life‐cycle study with C. variegatus suggests biological responses in this study were likely due to the TBT impurity and not to DBT alone. Results indicate that TBT impurity as low as 0.1% may have a significant influence on the perceived toxicity of DBT and that spontaneous production of TBT in DBT may be the major source of biological toxicity of DBT. Copyright © 2003 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/aoc.485</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0268-2605 |
ispartof | Applied organometallic chemistry, 2003-09, Vol.17 (9), p.653-661 |
issn | 0268-2605 1099-0739 |
language | eng |
recordid | cdi_crossref_primary_10_1002_aoc_485 |
source | Wiley Online Library All Journals |
subjects | Agnatha. Pisces Animal, plant and microbial ecology antifoulants Applied ecology Biological and medical sciences Cyprinodon variegatus dibutyltin Ecotoxicology, biological effects of pollution Effects of pollution and side effects of pesticides on vertebrates Fundamental and applied biological sciences. Psychology life-cycle toxicity PVC additives toxicant impurities tributyltin |
title | Life-cycle toxicity of dibutyltin to the sheepshead minnow (Cyprinodon variegatus) and implications of the ubiquitous tributyltin impurity in test material |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A24%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Life-cycle%20toxicity%20of%20dibutyltin%20to%20the%20sheepshead%20minnow%20(Cyprinodon%20variegatus)%20and%20implications%20of%20the%20ubiquitous%20tributyltin%20impurity%20in%20test%20material&rft.jtitle=Applied%20organometallic%20chemistry&rft.au=Lytle,%20Thomas%20F.&rft.date=2003-09&rft.volume=17&rft.issue=9&rft.spage=653&rft.epage=661&rft.pages=653-661&rft.issn=0268-2605&rft.eissn=1099-0739&rft.coden=AOCHEX&rft_id=info:doi/10.1002/aoc.485&rft_dat=%3Cistex_cross%3Eark_67375_WNG_W2B701KX_N%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |