Hydrogen Bonds and In situ Photoinduced Metallic Bi 0 /Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis

For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOB...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2024-10, Vol.63 (41), p.e202408862
Hauptverfasser: Sun, Rongjun, Zhu, Zijian, Tian, Na, Zhang, Yihe, Huang, Hongwei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 41
container_start_page e202408862
container_title Angewandte Chemie International Edition
container_volume 63
creator Sun, Rongjun
Zhu, Zijian
Tian, Na
Zhang, Yihe
Huang, Hongwei
description For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi and Ni are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi /BiOBr@Ni /NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.
doi_str_mv 10.1002/anie.202408862
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_anie_202408862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>38972856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c626-831e2088bf1c8466a61e5511bc6b411fcf37c3859c6fcbff972d71ff7e433dc23</originalsourceid><addsrcrecordid>eNo9kMFOwzAQRC0EoqVw5Yj8A2ljO3HcG21pSaXSItETl8hx1olR6lR2esiX8LukKnDZ3cPMjuYh9EjCMQlDOpHWwJiGNAqF4PQKDUlMScCShF33d8RYkIiYDNCd91-9XoiQ36IBE9OEipgP0XfaFa4pweJ5YwuPpS3w2mJv2hN-r5q2MbY4KSjwG7Syro3Cc4NDPNme50wpqMHJ1tgSfwYfqoID4EUlXQl476T1GhxudO_Zzd3z1qwg2LykWDcOp6as6g4vtTbKgG0vaUr2KZ03_h7daFl7ePjdI7RfLfeLNNjsXteL2SZQnPJAMAK0b55rokTEueQE4piQXPE8IkQrzRLFRDxVXKtc6751kRCtE-jJFIqyERpf3irXeO9AZ0dnDtJ1GQmzM-DsDDj7B9wbni6G4yk_QPEv_yPKfgB3zHcO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen Bonds and In situ Photoinduced Metallic Bi 0 /Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis</title><source>Access via Wiley Online Library</source><creator>Sun, Rongjun ; Zhu, Zijian ; Tian, Na ; Zhang, Yihe ; Huang, Hongwei</creator><creatorcontrib>Sun, Rongjun ; Zhu, Zijian ; Tian, Na ; Zhang, Yihe ; Huang, Hongwei</creatorcontrib><description>For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi and Ni are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi /BiOBr@Ni /NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202408862</identifier><identifier>PMID: 38972856</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Angewandte Chemie International Edition, 2024-10, Vol.63 (41), p.e202408862</ispartof><rights>2024 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c626-831e2088bf1c8466a61e5511bc6b411fcf37c3859c6fcbff972d71ff7e433dc23</cites><orcidid>0000-0001-6403-8946 ; 0000-0002-1407-4129 ; 0000-0003-0271-1079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38972856$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Rongjun</creatorcontrib><creatorcontrib>Zhu, Zijian</creatorcontrib><creatorcontrib>Tian, Na</creatorcontrib><creatorcontrib>Zhang, Yihe</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><title>Hydrogen Bonds and In situ Photoinduced Metallic Bi 0 /Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi and Ni are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi /BiOBr@Ni /NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.</description><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOwzAQRC0EoqVw5Yj8A2ljO3HcG21pSaXSItETl8hx1olR6lR2esiX8LukKnDZ3cPMjuYh9EjCMQlDOpHWwJiGNAqF4PQKDUlMScCShF33d8RYkIiYDNCd91-9XoiQ36IBE9OEipgP0XfaFa4pweJ5YwuPpS3w2mJv2hN-r5q2MbY4KSjwG7Syro3Cc4NDPNme50wpqMHJ1tgSfwYfqoID4EUlXQl476T1GhxudO_Zzd3z1qwg2LykWDcOp6as6g4vtTbKgG0vaUr2KZ03_h7daFl7ePjdI7RfLfeLNNjsXteL2SZQnPJAMAK0b55rokTEueQE4piQXPE8IkQrzRLFRDxVXKtc6751kRCtE-jJFIqyERpf3irXeO9AZ0dnDtJ1GQmzM-DsDDj7B9wbni6G4yk_QPEv_yPKfgB3zHcO</recordid><startdate>20241007</startdate><enddate>20241007</enddate><creator>Sun, Rongjun</creator><creator>Zhu, Zijian</creator><creator>Tian, Na</creator><creator>Zhang, Yihe</creator><creator>Huang, Hongwei</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6403-8946</orcidid><orcidid>https://orcid.org/0000-0002-1407-4129</orcidid><orcidid>https://orcid.org/0000-0003-0271-1079</orcidid></search><sort><creationdate>20241007</creationdate><title>Hydrogen Bonds and In situ Photoinduced Metallic Bi 0 /Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis</title><author>Sun, Rongjun ; Zhu, Zijian ; Tian, Na ; Zhang, Yihe ; Huang, Hongwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c626-831e2088bf1c8466a61e5511bc6b411fcf37c3859c6fcbff972d71ff7e433dc23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Rongjun</creatorcontrib><creatorcontrib>Zhu, Zijian</creatorcontrib><creatorcontrib>Tian, Na</creatorcontrib><creatorcontrib>Zhang, Yihe</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Rongjun</au><au>Zhu, Zijian</au><au>Tian, Na</au><au>Zhang, Yihe</au><au>Huang, Hongwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen Bonds and In situ Photoinduced Metallic Bi 0 /Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2024-10-07</date><risdate>2024</risdate><volume>63</volume><issue>41</issue><spage>e202408862</spage><pages>e202408862-</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>For heterojunction system, the lack of stable interfacial driving force and definite charge transfer channel makes the charge separation and transfer efficiency unsatisfactory. The photoreaction mechanism occurring at the interface also receives less attention. Herein, a 2D/2D Z-scheme junction BiOBr@NiFe-LDH with large-area contact featured by short interface hydrogen bonds and strong interfacial electric field (IEF) is synthesized, and in situ photoinduced metallic species assisting charge transfer mechanism is demonstrated. The hydrogen bonds between O atoms from BiOBr and H atoms from NiFe-LDH induce a significant interfacial charge redistribution, establishing a robust IEF. Notably, during photocatalytic reaction, Bi and Ni are in situ performed in heterojunction, which separately act as electron transport mediator and electron trap to further accelerate charge transfer efficiency up to 71.2 %. Theoretical calculations further demonstrate that the existence of Bi strengthens the IEF. Therefore, high-speed spatial charge separation is realized in Bi /BiOBr@Ni /NiFe-LDH, leading to a prominent photocatalytic activity with a tetracycline removal ratio of 88.3 % within 7 min under visible-light irradiation and the presence of persulfate, far exceeding majority of photocatalysts reported previously. This study provides valid insights for designing hydrogen bonding heterojunction systems, and advances mechanistic understanding on in situ photoreaction at interfaces.</abstract><cop>Germany</cop><pmid>38972856</pmid><doi>10.1002/anie.202408862</doi><orcidid>https://orcid.org/0000-0001-6403-8946</orcidid><orcidid>https://orcid.org/0000-0002-1407-4129</orcidid><orcidid>https://orcid.org/0000-0003-0271-1079</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2024-10, Vol.63 (41), p.e202408862
issn 1433-7851
1521-3773
language eng
recordid cdi_crossref_primary_10_1002_anie_202408862
source Access via Wiley Online Library
title Hydrogen Bonds and In situ Photoinduced Metallic Bi 0 /Ni 0 Accelerating Z-Scheme Charge Transfer of BiOBr@NiFe-LDH for Highly Efficient Photocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A19%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20Bonds%20and%20In%20situ%20Photoinduced%20Metallic%20Bi%200%20/Ni%200%20Accelerating%20Z-Scheme%20Charge%20Transfer%20of%20BiOBr@NiFe-LDH%20for%20Highly%20Efficient%20Photocatalysis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Sun,%20Rongjun&rft.date=2024-10-07&rft.volume=63&rft.issue=41&rft.spage=e202408862&rft.pages=e202408862-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202408862&rft_dat=%3Cpubmed_cross%3E38972856%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/38972856&rfr_iscdi=true