Promoting Surface Electric Conductivity for High-Rate LiCoO 2
The cathode materials work as the host framework for both Li diffusion and electron transport in Li-ion batteries. The Li diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance throu...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2023-03, Vol.62 (10), p.e202218595 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e202218595 |
container_title | Angewandte Chemie International Edition |
container_volume | 62 |
creator | Xu, Shenyang Tan, Xinghua Ding, Wangyang Ren, Wenju Zhao, Qi Huang, Weiyuan Liu, Jiajie Qi, Rui Zhang, Yongxin Yang, Jiachao Zuo, Changjian Ji, Haocheng Ren, Hengyu Cao, Bo Xue, Haoyu Gao, Zhihai Yi, Haocong Zhao, Wenguang Xiao, Yinguo Zhao, Qinghe Zhang, Mingjian Pan, Feng |
description | The cathode materials work as the host framework for both Li
diffusion and electron transport in Li-ion batteries. The Li
diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO
, promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V
) imposed in the bulk, thus driving more Li
extraction/insertion and making LiCoO
exhibit superior rate capability (154 mAh g
at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property. |
doi_str_mv | 10.1002/anie.202218595 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_anie_202218595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36592112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRbK1ePcr-gcT93uTgQUK1QqDixzlsNvvWlSZbNonQf29KtaeZw8zAPAjdUpJSQti96bxLGWGMZjKXZ2hOJaMJ15qfT15wnuhM0hm66vvvKZ9lRF2iGVcyZ5SyOXp4jaENg-82-H2MYKzDy62zQ_QWF6FrRjv4Hz_sMYSIV37zlbyZweHSF2GN2TW6ALPt3c2fLtDn0_KjWCXl-vmleCwTS4lmiQJpMqHqWkDtXEOUAZFzAKqs5QJAOq2lkYbUBKhoHGiujVAgGGuMZg1foPS4a2Po--ig2kXfmrivKKkOHKoDh-rEYSrcHQu7sW5dc4r_H-e_6FRY1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Shenyang ; Tan, Xinghua ; Ding, Wangyang ; Ren, Wenju ; Zhao, Qi ; Huang, Weiyuan ; Liu, Jiajie ; Qi, Rui ; Zhang, Yongxin ; Yang, Jiachao ; Zuo, Changjian ; Ji, Haocheng ; Ren, Hengyu ; Cao, Bo ; Xue, Haoyu ; Gao, Zhihai ; Yi, Haocong ; Zhao, Wenguang ; Xiao, Yinguo ; Zhao, Qinghe ; Zhang, Mingjian ; Pan, Feng</creator><creatorcontrib>Xu, Shenyang ; Tan, Xinghua ; Ding, Wangyang ; Ren, Wenju ; Zhao, Qi ; Huang, Weiyuan ; Liu, Jiajie ; Qi, Rui ; Zhang, Yongxin ; Yang, Jiachao ; Zuo, Changjian ; Ji, Haocheng ; Ren, Hengyu ; Cao, Bo ; Xue, Haoyu ; Gao, Zhihai ; Yi, Haocong ; Zhao, Wenguang ; Xiao, Yinguo ; Zhao, Qinghe ; Zhang, Mingjian ; Pan, Feng</creatorcontrib><description>The cathode materials work as the host framework for both Li
diffusion and electron transport in Li-ion batteries. The Li
diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO
, promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V
) imposed in the bulk, thus driving more Li
extraction/insertion and making LiCoO
exhibit superior rate capability (154 mAh g
at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202218595</identifier><identifier>PMID: 36592112</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Angewandte Chemie International Edition, 2023-03, Vol.62 (10), p.e202218595</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</citedby><cites>FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</cites><orcidid>0000-0002-1362-4336 ; 0000-0002-1124-484X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36592112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shenyang</creatorcontrib><creatorcontrib>Tan, Xinghua</creatorcontrib><creatorcontrib>Ding, Wangyang</creatorcontrib><creatorcontrib>Ren, Wenju</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Huang, Weiyuan</creatorcontrib><creatorcontrib>Liu, Jiajie</creatorcontrib><creatorcontrib>Qi, Rui</creatorcontrib><creatorcontrib>Zhang, Yongxin</creatorcontrib><creatorcontrib>Yang, Jiachao</creatorcontrib><creatorcontrib>Zuo, Changjian</creatorcontrib><creatorcontrib>Ji, Haocheng</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Xue, Haoyu</creatorcontrib><creatorcontrib>Gao, Zhihai</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Xiao, Yinguo</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The cathode materials work as the host framework for both Li
diffusion and electron transport in Li-ion batteries. The Li
diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO
, promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V
) imposed in the bulk, thus driving more Li
extraction/insertion and making LiCoO
exhibit superior rate capability (154 mAh g
at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.</description><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AYhBdRbK1ePcr-gcT93uTgQUK1QqDixzlsNvvWlSZbNonQf29KtaeZw8zAPAjdUpJSQti96bxLGWGMZjKXZ2hOJaMJ15qfT15wnuhM0hm66vvvKZ9lRF2iGVcyZ5SyOXp4jaENg-82-H2MYKzDy62zQ_QWF6FrRjv4Hz_sMYSIV37zlbyZweHSF2GN2TW6ALPt3c2fLtDn0_KjWCXl-vmleCwTS4lmiQJpMqHqWkDtXEOUAZFzAKqs5QJAOq2lkYbUBKhoHGiujVAgGGuMZg1foPS4a2Po--ig2kXfmrivKKkOHKoDh-rEYSrcHQu7sW5dc4r_H-e_6FRY1w</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Xu, Shenyang</creator><creator>Tan, Xinghua</creator><creator>Ding, Wangyang</creator><creator>Ren, Wenju</creator><creator>Zhao, Qi</creator><creator>Huang, Weiyuan</creator><creator>Liu, Jiajie</creator><creator>Qi, Rui</creator><creator>Zhang, Yongxin</creator><creator>Yang, Jiachao</creator><creator>Zuo, Changjian</creator><creator>Ji, Haocheng</creator><creator>Ren, Hengyu</creator><creator>Cao, Bo</creator><creator>Xue, Haoyu</creator><creator>Gao, Zhihai</creator><creator>Yi, Haocong</creator><creator>Zhao, Wenguang</creator><creator>Xiao, Yinguo</creator><creator>Zhao, Qinghe</creator><creator>Zhang, Mingjian</creator><creator>Pan, Feng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid><orcidid>https://orcid.org/0000-0002-1124-484X</orcidid></search><sort><creationdate>20230301</creationdate><title>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</title><author>Xu, Shenyang ; Tan, Xinghua ; Ding, Wangyang ; Ren, Wenju ; Zhao, Qi ; Huang, Weiyuan ; Liu, Jiajie ; Qi, Rui ; Zhang, Yongxin ; Yang, Jiachao ; Zuo, Changjian ; Ji, Haocheng ; Ren, Hengyu ; Cao, Bo ; Xue, Haoyu ; Gao, Zhihai ; Yi, Haocong ; Zhao, Wenguang ; Xiao, Yinguo ; Zhao, Qinghe ; Zhang, Mingjian ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shenyang</creatorcontrib><creatorcontrib>Tan, Xinghua</creatorcontrib><creatorcontrib>Ding, Wangyang</creatorcontrib><creatorcontrib>Ren, Wenju</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Huang, Weiyuan</creatorcontrib><creatorcontrib>Liu, Jiajie</creatorcontrib><creatorcontrib>Qi, Rui</creatorcontrib><creatorcontrib>Zhang, Yongxin</creatorcontrib><creatorcontrib>Yang, Jiachao</creatorcontrib><creatorcontrib>Zuo, Changjian</creatorcontrib><creatorcontrib>Ji, Haocheng</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Xue, Haoyu</creatorcontrib><creatorcontrib>Gao, Zhihai</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Xiao, Yinguo</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shenyang</au><au>Tan, Xinghua</au><au>Ding, Wangyang</au><au>Ren, Wenju</au><au>Zhao, Qi</au><au>Huang, Weiyuan</au><au>Liu, Jiajie</au><au>Qi, Rui</au><au>Zhang, Yongxin</au><au>Yang, Jiachao</au><au>Zuo, Changjian</au><au>Ji, Haocheng</au><au>Ren, Hengyu</au><au>Cao, Bo</au><au>Xue, Haoyu</au><au>Gao, Zhihai</au><au>Yi, Haocong</au><au>Zhao, Wenguang</au><au>Xiao, Yinguo</au><au>Zhao, Qinghe</au><au>Zhang, Mingjian</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>62</volume><issue>10</issue><spage>e202218595</spage><pages>e202218595-</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The cathode materials work as the host framework for both Li
diffusion and electron transport in Li-ion batteries. The Li
diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO
, promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V
) imposed in the bulk, thus driving more Li
extraction/insertion and making LiCoO
exhibit superior rate capability (154 mAh g
at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.</abstract><cop>Germany</cop><pmid>36592112</pmid><doi>10.1002/anie.202218595</doi><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid><orcidid>https://orcid.org/0000-0002-1124-484X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2023-03, Vol.62 (10), p.e202218595 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_crossref_primary_10_1002_anie_202218595 |
source | Wiley Online Library Journals Frontfile Complete |
title | Promoting Surface Electric Conductivity for High-Rate LiCoO 2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promoting%20Surface%20Electric%20Conductivity%20for%20High-Rate%20LiCoO%202&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Xu,%20Shenyang&rft.date=2023-03-01&rft.volume=62&rft.issue=10&rft.spage=e202218595&rft.pages=e202218595-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202218595&rft_dat=%3Cpubmed_cross%3E36592112%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36592112&rfr_iscdi=true |