Promoting Surface Electric Conductivity for High-Rate LiCoO 2

The cathode materials work as the host framework for both Li diffusion and electron transport in Li-ion batteries. The Li diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance throu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2023-03, Vol.62 (10), p.e202218595
Hauptverfasser: Xu, Shenyang, Tan, Xinghua, Ding, Wangyang, Ren, Wenju, Zhao, Qi, Huang, Weiyuan, Liu, Jiajie, Qi, Rui, Zhang, Yongxin, Yang, Jiachao, Zuo, Changjian, Ji, Haocheng, Ren, Hengyu, Cao, Bo, Xue, Haoyu, Gao, Zhihai, Yi, Haocong, Zhao, Wenguang, Xiao, Yinguo, Zhao, Qinghe, Zhang, Mingjian, Pan, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page e202218595
container_title Angewandte Chemie International Edition
container_volume 62
creator Xu, Shenyang
Tan, Xinghua
Ding, Wangyang
Ren, Wenju
Zhao, Qi
Huang, Weiyuan
Liu, Jiajie
Qi, Rui
Zhang, Yongxin
Yang, Jiachao
Zuo, Changjian
Ji, Haocheng
Ren, Hengyu
Cao, Bo
Xue, Haoyu
Gao, Zhihai
Yi, Haocong
Zhao, Wenguang
Xiao, Yinguo
Zhao, Qinghe
Zhang, Mingjian
Pan, Feng
description The cathode materials work as the host framework for both Li diffusion and electron transport in Li-ion batteries. The Li diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V ) imposed in the bulk, thus driving more Li extraction/insertion and making LiCoO exhibit superior rate capability (154 mAh g at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.
doi_str_mv 10.1002/anie.202218595
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_anie_202218595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>36592112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AYhBdRbK1ePcr-gcT93uTgQUK1QqDixzlsNvvWlSZbNonQf29KtaeZw8zAPAjdUpJSQti96bxLGWGMZjKXZ2hOJaMJ15qfT15wnuhM0hm66vvvKZ9lRF2iGVcyZ5SyOXp4jaENg-82-H2MYKzDy62zQ_QWF6FrRjv4Hz_sMYSIV37zlbyZweHSF2GN2TW6ALPt3c2fLtDn0_KjWCXl-vmleCwTS4lmiQJpMqHqWkDtXEOUAZFzAKqs5QJAOq2lkYbUBKhoHGiujVAgGGuMZg1foPS4a2Po--ig2kXfmrivKKkOHKoDh-rEYSrcHQu7sW5dc4r_H-e_6FRY1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Xu, Shenyang ; Tan, Xinghua ; Ding, Wangyang ; Ren, Wenju ; Zhao, Qi ; Huang, Weiyuan ; Liu, Jiajie ; Qi, Rui ; Zhang, Yongxin ; Yang, Jiachao ; Zuo, Changjian ; Ji, Haocheng ; Ren, Hengyu ; Cao, Bo ; Xue, Haoyu ; Gao, Zhihai ; Yi, Haocong ; Zhao, Wenguang ; Xiao, Yinguo ; Zhao, Qinghe ; Zhang, Mingjian ; Pan, Feng</creator><creatorcontrib>Xu, Shenyang ; Tan, Xinghua ; Ding, Wangyang ; Ren, Wenju ; Zhao, Qi ; Huang, Weiyuan ; Liu, Jiajie ; Qi, Rui ; Zhang, Yongxin ; Yang, Jiachao ; Zuo, Changjian ; Ji, Haocheng ; Ren, Hengyu ; Cao, Bo ; Xue, Haoyu ; Gao, Zhihai ; Yi, Haocong ; Zhao, Wenguang ; Xiao, Yinguo ; Zhao, Qinghe ; Zhang, Mingjian ; Pan, Feng</creatorcontrib><description>The cathode materials work as the host framework for both Li diffusion and electron transport in Li-ion batteries. The Li diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V ) imposed in the bulk, thus driving more Li extraction/insertion and making LiCoO exhibit superior rate capability (154 mAh g at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.</description><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202218595</identifier><identifier>PMID: 36592112</identifier><language>eng</language><publisher>Germany</publisher><ispartof>Angewandte Chemie International Edition, 2023-03, Vol.62 (10), p.e202218595</ispartof><rights>2023 Wiley-VCH GmbH.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</citedby><cites>FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</cites><orcidid>0000-0002-1362-4336 ; 0000-0002-1124-484X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/36592112$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Shenyang</creatorcontrib><creatorcontrib>Tan, Xinghua</creatorcontrib><creatorcontrib>Ding, Wangyang</creatorcontrib><creatorcontrib>Ren, Wenju</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Huang, Weiyuan</creatorcontrib><creatorcontrib>Liu, Jiajie</creatorcontrib><creatorcontrib>Qi, Rui</creatorcontrib><creatorcontrib>Zhang, Yongxin</creatorcontrib><creatorcontrib>Yang, Jiachao</creatorcontrib><creatorcontrib>Zuo, Changjian</creatorcontrib><creatorcontrib>Ji, Haocheng</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Xue, Haoyu</creatorcontrib><creatorcontrib>Gao, Zhihai</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Xiao, Yinguo</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>The cathode materials work as the host framework for both Li diffusion and electron transport in Li-ion batteries. The Li diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V ) imposed in the bulk, thus driving more Li extraction/insertion and making LiCoO exhibit superior rate capability (154 mAh g at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.</description><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AYhBdRbK1ePcr-gcT93uTgQUK1QqDixzlsNvvWlSZbNonQf29KtaeZw8zAPAjdUpJSQti96bxLGWGMZjKXZ2hOJaMJ15qfT15wnuhM0hm66vvvKZ9lRF2iGVcyZ5SyOXp4jaENg-82-H2MYKzDy62zQ_QWF6FrRjv4Hz_sMYSIV37zlbyZweHSF2GN2TW6ALPt3c2fLtDn0_KjWCXl-vmleCwTS4lmiQJpMqHqWkDtXEOUAZFzAKqs5QJAOq2lkYbUBKhoHGiujVAgGGuMZg1foPS4a2Po--ig2kXfmrivKKkOHKoDh-rEYSrcHQu7sW5dc4r_H-e_6FRY1w</recordid><startdate>20230301</startdate><enddate>20230301</enddate><creator>Xu, Shenyang</creator><creator>Tan, Xinghua</creator><creator>Ding, Wangyang</creator><creator>Ren, Wenju</creator><creator>Zhao, Qi</creator><creator>Huang, Weiyuan</creator><creator>Liu, Jiajie</creator><creator>Qi, Rui</creator><creator>Zhang, Yongxin</creator><creator>Yang, Jiachao</creator><creator>Zuo, Changjian</creator><creator>Ji, Haocheng</creator><creator>Ren, Hengyu</creator><creator>Cao, Bo</creator><creator>Xue, Haoyu</creator><creator>Gao, Zhihai</creator><creator>Yi, Haocong</creator><creator>Zhao, Wenguang</creator><creator>Xiao, Yinguo</creator><creator>Zhao, Qinghe</creator><creator>Zhang, Mingjian</creator><creator>Pan, Feng</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid><orcidid>https://orcid.org/0000-0002-1124-484X</orcidid></search><sort><creationdate>20230301</creationdate><title>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</title><author>Xu, Shenyang ; Tan, Xinghua ; Ding, Wangyang ; Ren, Wenju ; Zhao, Qi ; Huang, Weiyuan ; Liu, Jiajie ; Qi, Rui ; Zhang, Yongxin ; Yang, Jiachao ; Zuo, Changjian ; Ji, Haocheng ; Ren, Hengyu ; Cao, Bo ; Xue, Haoyu ; Gao, Zhihai ; Yi, Haocong ; Zhao, Wenguang ; Xiao, Yinguo ; Zhao, Qinghe ; Zhang, Mingjian ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1072-6f5a846bb4fbeed06af493ff16cc34ff5e775a5a0b0f14def737a46f422da72d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Shenyang</creatorcontrib><creatorcontrib>Tan, Xinghua</creatorcontrib><creatorcontrib>Ding, Wangyang</creatorcontrib><creatorcontrib>Ren, Wenju</creatorcontrib><creatorcontrib>Zhao, Qi</creatorcontrib><creatorcontrib>Huang, Weiyuan</creatorcontrib><creatorcontrib>Liu, Jiajie</creatorcontrib><creatorcontrib>Qi, Rui</creatorcontrib><creatorcontrib>Zhang, Yongxin</creatorcontrib><creatorcontrib>Yang, Jiachao</creatorcontrib><creatorcontrib>Zuo, Changjian</creatorcontrib><creatorcontrib>Ji, Haocheng</creatorcontrib><creatorcontrib>Ren, Hengyu</creatorcontrib><creatorcontrib>Cao, Bo</creatorcontrib><creatorcontrib>Xue, Haoyu</creatorcontrib><creatorcontrib>Gao, Zhihai</creatorcontrib><creatorcontrib>Yi, Haocong</creatorcontrib><creatorcontrib>Zhao, Wenguang</creatorcontrib><creatorcontrib>Xiao, Yinguo</creatorcontrib><creatorcontrib>Zhao, Qinghe</creatorcontrib><creatorcontrib>Zhang, Mingjian</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Shenyang</au><au>Tan, Xinghua</au><au>Ding, Wangyang</au><au>Ren, Wenju</au><au>Zhao, Qi</au><au>Huang, Weiyuan</au><au>Liu, Jiajie</au><au>Qi, Rui</au><au>Zhang, Yongxin</au><au>Yang, Jiachao</au><au>Zuo, Changjian</au><au>Ji, Haocheng</au><au>Ren, Hengyu</au><au>Cao, Bo</au><au>Xue, Haoyu</au><au>Gao, Zhihai</au><au>Yi, Haocong</au><au>Zhao, Wenguang</au><au>Xiao, Yinguo</au><au>Zhao, Qinghe</au><au>Zhang, Mingjian</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Promoting Surface Electric Conductivity for High-Rate LiCoO 2</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2023-03-01</date><risdate>2023</risdate><volume>62</volume><issue>10</issue><spage>e202218595</spage><pages>e202218595-</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>The cathode materials work as the host framework for both Li diffusion and electron transport in Li-ion batteries. The Li diffusion property is always the research focus, while the electron transport property is less studied. Herein, we propose a unique strategy to elevate the rate performance through promoting the surface electric conductivity. Specifically, a disordered rock-salt phase was coherently constructed at the surface of LiCoO , promoting the surface electric conductivity by over one magnitude. It increased the effective voltage (V ) imposed in the bulk, thus driving more Li extraction/insertion and making LiCoO exhibit superior rate capability (154 mAh g at 10 C), and excellent cycling performance (93 % after 1000 cycles at 10 C). The universality of this strategy was confirmed by another surface design and a simulation. Our findings provide a new angle for developing high-rate cathode materials by tuning the surface electron transport property.</abstract><cop>Germany</cop><pmid>36592112</pmid><doi>10.1002/anie.202218595</doi><orcidid>https://orcid.org/0000-0002-1362-4336</orcidid><orcidid>https://orcid.org/0000-0002-1124-484X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2023-03, Vol.62 (10), p.e202218595
issn 1433-7851
1521-3773
language eng
recordid cdi_crossref_primary_10_1002_anie_202218595
source Wiley Online Library Journals Frontfile Complete
title Promoting Surface Electric Conductivity for High-Rate LiCoO 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A54%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Promoting%20Surface%20Electric%20Conductivity%20for%20High-Rate%20LiCoO%202&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Xu,%20Shenyang&rft.date=2023-03-01&rft.volume=62&rft.issue=10&rft.spage=e202218595&rft.pages=e202218595-&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202218595&rft_dat=%3Cpubmed_cross%3E36592112%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/36592112&rfr_iscdi=true