Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide

The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-11
Hauptverfasser: Xue, Song, Li, Xiaohui, Sun, Yuanyuan, Cui, Wangyang, Cao, Fengliang, Cao, Zhisheng, Huang, Yin, Shao, Mingzheng, Li, Zhongtao, Zhi, Linjie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Angewandte Chemie
container_volume
creator Xue, Song
Li, Xiaohui
Sun, Yuanyuan
Cui, Wangyang
Cao, Fengliang
Cao, Zhisheng
Huang, Yin
Shao, Mingzheng
Li, Zhongtao
Zhi, Linjie
description The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.
doi_str_mv 10.1002/ange.202420063
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202420063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202420063</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_ange_2024200633</originalsourceid><addsrcrecordid>eNqVj7FuwjAURa2KSg20K7N_IOHZSUiZUSs-gIXJMvFLMHLt6DmpyMYn9Bv7JW0k2p3pLuce6TC2FJAJALnSvsVMgiwkwDp_YIkopUjzqqxmLAEoivRVFpsnNo_xDL-IrDYJO-xGQ6FFz0kbW2vH0eujs77l1psh9mS1-75-OfxEx8NlnFB0WPcUCM1Q9zZ43gd--vN0SOFiDT6zx0a7iC-3XbDs_W2_3aU1hRgJG9WR_dA0KgFqClBTgPoPyO8-_ACuIlFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide</title><source>Access via Wiley Online Library</source><creator>Xue, Song ; Li, Xiaohui ; Sun, Yuanyuan ; Cui, Wangyang ; Cao, Fengliang ; Cao, Zhisheng ; Huang, Yin ; Shao, Mingzheng ; Li, Zhongtao ; Zhi, Linjie</creator><creatorcontrib>Xue, Song ; Li, Xiaohui ; Sun, Yuanyuan ; Cui, Wangyang ; Cao, Fengliang ; Cao, Zhisheng ; Huang, Yin ; Shao, Mingzheng ; Li, Zhongtao ; Zhi, Linjie</creatorcontrib><description>The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202420063</identifier><language>eng</language><ispartof>Angewandte Chemie, 2024-11</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xue, Song</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Sun, Yuanyuan</creatorcontrib><creatorcontrib>Cui, Wangyang</creatorcontrib><creatorcontrib>Cao, Fengliang</creatorcontrib><creatorcontrib>Cao, Zhisheng</creatorcontrib><creatorcontrib>Huang, Yin</creatorcontrib><creatorcontrib>Shao, Mingzheng</creatorcontrib><creatorcontrib>Li, Zhongtao</creatorcontrib><creatorcontrib>Zhi, Linjie</creatorcontrib><title>Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide</title><title>Angewandte Chemie</title><description>The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj7FuwjAURa2KSg20K7N_IOHZSUiZUSs-gIXJMvFLMHLt6DmpyMYn9Bv7JW0k2p3pLuce6TC2FJAJALnSvsVMgiwkwDp_YIkopUjzqqxmLAEoivRVFpsnNo_xDL-IrDYJO-xGQ6FFz0kbW2vH0eujs77l1psh9mS1-75-OfxEx8NlnFB0WPcUCM1Q9zZ43gd--vN0SOFiDT6zx0a7iC-3XbDs_W2_3aU1hRgJG9WR_dA0KgFqClBTgPoPyO8-_ACuIlFg</recordid><startdate>20241121</startdate><enddate>20241121</enddate><creator>Xue, Song</creator><creator>Li, Xiaohui</creator><creator>Sun, Yuanyuan</creator><creator>Cui, Wangyang</creator><creator>Cao, Fengliang</creator><creator>Cao, Zhisheng</creator><creator>Huang, Yin</creator><creator>Shao, Mingzheng</creator><creator>Li, Zhongtao</creator><creator>Zhi, Linjie</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241121</creationdate><title>Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide</title><author>Xue, Song ; Li, Xiaohui ; Sun, Yuanyuan ; Cui, Wangyang ; Cao, Fengliang ; Cao, Zhisheng ; Huang, Yin ; Shao, Mingzheng ; Li, Zhongtao ; Zhi, Linjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_ange_2024200633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xue, Song</creatorcontrib><creatorcontrib>Li, Xiaohui</creatorcontrib><creatorcontrib>Sun, Yuanyuan</creatorcontrib><creatorcontrib>Cui, Wangyang</creatorcontrib><creatorcontrib>Cao, Fengliang</creatorcontrib><creatorcontrib>Cao, Zhisheng</creatorcontrib><creatorcontrib>Huang, Yin</creatorcontrib><creatorcontrib>Shao, Mingzheng</creatorcontrib><creatorcontrib>Li, Zhongtao</creatorcontrib><creatorcontrib>Zhi, Linjie</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xue, Song</au><au>Li, Xiaohui</au><au>Sun, Yuanyuan</au><au>Cui, Wangyang</au><au>Cao, Fengliang</au><au>Cao, Zhisheng</au><au>Huang, Yin</au><au>Shao, Mingzheng</au><au>Li, Zhongtao</au><au>Zhi, Linjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-11-21</date><risdate>2024</risdate><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>The electrochemical synthesis of hydrogen peroxide from oxygen and water, powered by renewable electricity, provides a highly attractive alternative to the energy‐intensive autoxidation process presently used in industry, but much remains unknown about this two‐electron oxygen reduction reaction (2e‐ORR), especially the local proton effect. Here, we have investigated the function of hydrogen‐associated intermediates in the 2e‐ORR using a rationally designed cooperative electrode material with cobalt (II) clusters embedded onto the oxidized carbon nanotube composites (Co‐OCNT). We found that the local proton availability can determine both the reaction kinetics and selectivity. A 2e‐ORR process involving hydrogen radical transfer is confirmed. Specifically, the carbon sites from the OCNTs promote proton production, and the cobalt sites from the Co cluster facilitate ORR intermediate formation. The high local proton availability and the cooperative dual‐active sites both contribute to the superior reaction kinetics and selectivity of the Co‐OCNT, reaching an H2O2 production rate of ~13.4 mol gcat‐1 h‐1 and a faradaic efficiency of 90% at a current density of 100 mA cm‐2. Further cascading the 2e‐ORR with the electro‐Fenton process shows a high selectivity of oxalic acid up to 97% for the valorization of ethylene glycol.</abstract><doi>10.1002/ange.202420063</doi></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-11
issn 0044-8249
1521-3757
language eng
recordid cdi_crossref_primary_10_1002_ange_202420063
source Access via Wiley Online Library
title Hydrogen radical enabling industrial‐level oxygen electroreduction to hydrogen peroxide
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T13%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrogen%20radical%20enabling%20industrial%E2%80%90level%20oxygen%20electroreduction%20to%20hydrogen%20peroxide&rft.jtitle=Angewandte%20Chemie&rft.au=Xue,%20Song&rft.date=2024-11-21&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202420063&rft_dat=%3Ccrossref%3E10_1002_ange_202420063%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true