Fuel‐Driven π‐Conjugated Superstructures to Form Transient Conductive Hydrogels
Despite advances in creating dissipative materials with transient properties, such as hydrogels and active droplets, their application remains confined to temporal changes in structural properties. Developing out‐of‐equilibrium materials whose electronic functions are parameterized by a chemical rea...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2025-01, Vol.137 (5), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | 137 |
creator | Tsironi, Ifigeneia Maleszka, Jarek A. Kriebisch, Brigitte A. K. Wilson‐Kovacs, Robert S. Acevedo, Orlando O'Leary, Shamus L. Watt, John Boekhoven, Job Olivier, Jean‐Hubert |
description | Despite advances in creating dissipative materials with transient properties, such as hydrogels and active droplets, their application remains confined to temporal changes in structural properties. Developing out‐of‐equilibrium materials whose electronic functions are parameterized by a chemical reaction cycle is challenging. Yet, this class of materials is required to construct biomimetic materials. In contrast to traditional chemical reaction cycles that exploit molecularly dissolved building blocks at thermodynamic equilibrium, we show that fiber structures derived from reactive naphthalene diimide (NDI) building blocks can be used as resting states to form far‐from‐equilibrium conductive hydrogels after the addition of chemical fuels. Upon fueling the NDI‐derived fibers, a dual‐component activation and deactivation pathway is deduced by kinetic analysis and is absent when using a molecularly dissolved resting state. Investigating the solid‐state morphologies of the structures formed throughout the fuel‐driven reaction cycle using cryo‐EM reveals that the resting thermodynamic fibers evolve to transient thicker fibrils and layered superstructures. We show that the transient redox‐active hydrogels exhibit a nearly threefold increase in electrical conductivity upon fuel consumption before reverting to their original value over hours. These far‐from‐equilibrium materials are potential candidates in applications such as programmable biorobotics and chemical computing.
Chemical reaction cycles applied to π‐conjugated superstructures enable the formation of transient hydrogels whose electrical conductivity is encoded by the consumption of chemical fuels. |
doi_str_mv | 10.1002/ange.202417109 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202417109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3160714645</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1179-ce77fdd03c9564c6860ca19bc9059bd7cf1adb1ea45d9138c0918ef32d0e391f3</originalsourceid><addsrcrecordid>eNqFkM9Kw0AQhxdRsFavngOeU2eSTTZ7LLV_hKIH63nZ7k5KSprU3UTprY_QN_MdfBJTKnr0ND-Y75uBH2O3CAMEiO51taJBBBFHgSDPWA-TCMNYJOKc9QA4D7OIy0t25f0aANJIyB5bTFoqv_aHB1e8UxV87rs8qqt1u9IN2eCl3ZLzjWtN0zryQVMHk9ptgoXTlS-oaoIOtt22s4PZzrp6RaW_Zhe5Lj3d_Mw-e52MF6NZOH-ePo6G89AgChkaEiK3FmIjk5SbNEvBaJRLIyGRSytMjtoukTRPrMQ4MyAxozyOLFAsMY_77O50d-vqt5Z8o9Z166rupYoxBYE85UlHDU6UcbX3jnK1dcVGu51CUMfm1LE59dtcJ8iT8FGUtPuHVsOn6fjP_QavT3Xe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3160714645</pqid></control><display><type>article</type><title>Fuel‐Driven π‐Conjugated Superstructures to Form Transient Conductive Hydrogels</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tsironi, Ifigeneia ; Maleszka, Jarek A. ; Kriebisch, Brigitte A. K. ; Wilson‐Kovacs, Robert S. ; Acevedo, Orlando ; O'Leary, Shamus L. ; Watt, John ; Boekhoven, Job ; Olivier, Jean‐Hubert</creator><creatorcontrib>Tsironi, Ifigeneia ; Maleszka, Jarek A. ; Kriebisch, Brigitte A. K. ; Wilson‐Kovacs, Robert S. ; Acevedo, Orlando ; O'Leary, Shamus L. ; Watt, John ; Boekhoven, Job ; Olivier, Jean‐Hubert</creatorcontrib><description>Despite advances in creating dissipative materials with transient properties, such as hydrogels and active droplets, their application remains confined to temporal changes in structural properties. Developing out‐of‐equilibrium materials whose electronic functions are parameterized by a chemical reaction cycle is challenging. Yet, this class of materials is required to construct biomimetic materials. In contrast to traditional chemical reaction cycles that exploit molecularly dissolved building blocks at thermodynamic equilibrium, we show that fiber structures derived from reactive naphthalene diimide (NDI) building blocks can be used as resting states to form far‐from‐equilibrium conductive hydrogels after the addition of chemical fuels. Upon fueling the NDI‐derived fibers, a dual‐component activation and deactivation pathway is deduced by kinetic analysis and is absent when using a molecularly dissolved resting state. Investigating the solid‐state morphologies of the structures formed throughout the fuel‐driven reaction cycle using cryo‐EM reveals that the resting thermodynamic fibers evolve to transient thicker fibrils and layered superstructures. We show that the transient redox‐active hydrogels exhibit a nearly threefold increase in electrical conductivity upon fuel consumption before reverting to their original value over hours. These far‐from‐equilibrium materials are potential candidates in applications such as programmable biorobotics and chemical computing.
Chemical reaction cycles applied to π‐conjugated superstructures enable the formation of transient hydrogels whose electrical conductivity is encoded by the consumption of chemical fuels.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202417109</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biomimetic materials ; Biomimetics ; Bionics ; Chemical fuels ; Chemical Reaction Cycle ; Chemical reactions ; Conductive Hydrogels ; Diimide ; Electrical conductivity ; Electrical resistivity ; Energy consumption ; Equilibrium ; Far-From-Equilibrium ; Fibers ; Fibrils ; Fuel consumption ; Hydrogels ; Naphthalene ; Naphthalene Diimide ; Robotics ; Superstructures ; Thermodynamic equilibrium ; Thermodynamics</subject><ispartof>Angewandte Chemie, 2025-01, Vol.137 (5), p.n/a</ispartof><rights>2024 Wiley-VCH GmbH</rights><rights>2025 Wiley-VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1179-ce77fdd03c9564c6860ca19bc9059bd7cf1adb1ea45d9138c0918ef32d0e391f3</cites><orcidid>0000-0002-9126-2430 ; 0000-0002-6107-4383 ; 0009-0000-9444-3811 ; 0000-0003-0978-4107 ; 0000-0002-6110-3930</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fange.202417109$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fange.202417109$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tsironi, Ifigeneia</creatorcontrib><creatorcontrib>Maleszka, Jarek A.</creatorcontrib><creatorcontrib>Kriebisch, Brigitte A. K.</creatorcontrib><creatorcontrib>Wilson‐Kovacs, Robert S.</creatorcontrib><creatorcontrib>Acevedo, Orlando</creatorcontrib><creatorcontrib>O'Leary, Shamus L.</creatorcontrib><creatorcontrib>Watt, John</creatorcontrib><creatorcontrib>Boekhoven, Job</creatorcontrib><creatorcontrib>Olivier, Jean‐Hubert</creatorcontrib><title>Fuel‐Driven π‐Conjugated Superstructures to Form Transient Conductive Hydrogels</title><title>Angewandte Chemie</title><description>Despite advances in creating dissipative materials with transient properties, such as hydrogels and active droplets, their application remains confined to temporal changes in structural properties. Developing out‐of‐equilibrium materials whose electronic functions are parameterized by a chemical reaction cycle is challenging. Yet, this class of materials is required to construct biomimetic materials. In contrast to traditional chemical reaction cycles that exploit molecularly dissolved building blocks at thermodynamic equilibrium, we show that fiber structures derived from reactive naphthalene diimide (NDI) building blocks can be used as resting states to form far‐from‐equilibrium conductive hydrogels after the addition of chemical fuels. Upon fueling the NDI‐derived fibers, a dual‐component activation and deactivation pathway is deduced by kinetic analysis and is absent when using a molecularly dissolved resting state. Investigating the solid‐state morphologies of the structures formed throughout the fuel‐driven reaction cycle using cryo‐EM reveals that the resting thermodynamic fibers evolve to transient thicker fibrils and layered superstructures. We show that the transient redox‐active hydrogels exhibit a nearly threefold increase in electrical conductivity upon fuel consumption before reverting to their original value over hours. These far‐from‐equilibrium materials are potential candidates in applications such as programmable biorobotics and chemical computing.
Chemical reaction cycles applied to π‐conjugated superstructures enable the formation of transient hydrogels whose electrical conductivity is encoded by the consumption of chemical fuels.</description><subject>Biomimetic materials</subject><subject>Biomimetics</subject><subject>Bionics</subject><subject>Chemical fuels</subject><subject>Chemical Reaction Cycle</subject><subject>Chemical reactions</subject><subject>Conductive Hydrogels</subject><subject>Diimide</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Energy consumption</subject><subject>Equilibrium</subject><subject>Far-From-Equilibrium</subject><subject>Fibers</subject><subject>Fibrils</subject><subject>Fuel consumption</subject><subject>Hydrogels</subject><subject>Naphthalene</subject><subject>Naphthalene Diimide</subject><subject>Robotics</subject><subject>Superstructures</subject><subject>Thermodynamic equilibrium</subject><subject>Thermodynamics</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqFkM9Kw0AQhxdRsFavngOeU2eSTTZ7LLV_hKIH63nZ7k5KSprU3UTprY_QN_MdfBJTKnr0ND-Y75uBH2O3CAMEiO51taJBBBFHgSDPWA-TCMNYJOKc9QA4D7OIy0t25f0aANJIyB5bTFoqv_aHB1e8UxV87rs8qqt1u9IN2eCl3ZLzjWtN0zryQVMHk9ptgoXTlS-oaoIOtt22s4PZzrp6RaW_Zhe5Lj3d_Mw-e52MF6NZOH-ePo6G89AgChkaEiK3FmIjk5SbNEvBaJRLIyGRSytMjtoukTRPrMQ4MyAxozyOLFAsMY_77O50d-vqt5Z8o9Z166rupYoxBYE85UlHDU6UcbX3jnK1dcVGu51CUMfm1LE59dtcJ8iT8FGUtPuHVsOn6fjP_QavT3Xe</recordid><startdate>20250127</startdate><enddate>20250127</enddate><creator>Tsironi, Ifigeneia</creator><creator>Maleszka, Jarek A.</creator><creator>Kriebisch, Brigitte A. K.</creator><creator>Wilson‐Kovacs, Robert S.</creator><creator>Acevedo, Orlando</creator><creator>O'Leary, Shamus L.</creator><creator>Watt, John</creator><creator>Boekhoven, Job</creator><creator>Olivier, Jean‐Hubert</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9126-2430</orcidid><orcidid>https://orcid.org/0000-0002-6107-4383</orcidid><orcidid>https://orcid.org/0009-0000-9444-3811</orcidid><orcidid>https://orcid.org/0000-0003-0978-4107</orcidid><orcidid>https://orcid.org/0000-0002-6110-3930</orcidid></search><sort><creationdate>20250127</creationdate><title>Fuel‐Driven π‐Conjugated Superstructures to Form Transient Conductive Hydrogels</title><author>Tsironi, Ifigeneia ; Maleszka, Jarek A. ; Kriebisch, Brigitte A. K. ; Wilson‐Kovacs, Robert S. ; Acevedo, Orlando ; O'Leary, Shamus L. ; Watt, John ; Boekhoven, Job ; Olivier, Jean‐Hubert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1179-ce77fdd03c9564c6860ca19bc9059bd7cf1adb1ea45d9138c0918ef32d0e391f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Biomimetic materials</topic><topic>Biomimetics</topic><topic>Bionics</topic><topic>Chemical fuels</topic><topic>Chemical Reaction Cycle</topic><topic>Chemical reactions</topic><topic>Conductive Hydrogels</topic><topic>Diimide</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Energy consumption</topic><topic>Equilibrium</topic><topic>Far-From-Equilibrium</topic><topic>Fibers</topic><topic>Fibrils</topic><topic>Fuel consumption</topic><topic>Hydrogels</topic><topic>Naphthalene</topic><topic>Naphthalene Diimide</topic><topic>Robotics</topic><topic>Superstructures</topic><topic>Thermodynamic equilibrium</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tsironi, Ifigeneia</creatorcontrib><creatorcontrib>Maleszka, Jarek A.</creatorcontrib><creatorcontrib>Kriebisch, Brigitte A. K.</creatorcontrib><creatorcontrib>Wilson‐Kovacs, Robert S.</creatorcontrib><creatorcontrib>Acevedo, Orlando</creatorcontrib><creatorcontrib>O'Leary, Shamus L.</creatorcontrib><creatorcontrib>Watt, John</creatorcontrib><creatorcontrib>Boekhoven, Job</creatorcontrib><creatorcontrib>Olivier, Jean‐Hubert</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tsironi, Ifigeneia</au><au>Maleszka, Jarek A.</au><au>Kriebisch, Brigitte A. K.</au><au>Wilson‐Kovacs, Robert S.</au><au>Acevedo, Orlando</au><au>O'Leary, Shamus L.</au><au>Watt, John</au><au>Boekhoven, Job</au><au>Olivier, Jean‐Hubert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuel‐Driven π‐Conjugated Superstructures to Form Transient Conductive Hydrogels</atitle><jtitle>Angewandte Chemie</jtitle><date>2025-01-27</date><risdate>2025</risdate><volume>137</volume><issue>5</issue><epage>n/a</epage><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Despite advances in creating dissipative materials with transient properties, such as hydrogels and active droplets, their application remains confined to temporal changes in structural properties. Developing out‐of‐equilibrium materials whose electronic functions are parameterized by a chemical reaction cycle is challenging. Yet, this class of materials is required to construct biomimetic materials. In contrast to traditional chemical reaction cycles that exploit molecularly dissolved building blocks at thermodynamic equilibrium, we show that fiber structures derived from reactive naphthalene diimide (NDI) building blocks can be used as resting states to form far‐from‐equilibrium conductive hydrogels after the addition of chemical fuels. Upon fueling the NDI‐derived fibers, a dual‐component activation and deactivation pathway is deduced by kinetic analysis and is absent when using a molecularly dissolved resting state. Investigating the solid‐state morphologies of the structures formed throughout the fuel‐driven reaction cycle using cryo‐EM reveals that the resting thermodynamic fibers evolve to transient thicker fibrils and layered superstructures. We show that the transient redox‐active hydrogels exhibit a nearly threefold increase in electrical conductivity upon fuel consumption before reverting to their original value over hours. These far‐from‐equilibrium materials are potential candidates in applications such as programmable biorobotics and chemical computing.
Chemical reaction cycles applied to π‐conjugated superstructures enable the formation of transient hydrogels whose electrical conductivity is encoded by the consumption of chemical fuels.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.202417109</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9126-2430</orcidid><orcidid>https://orcid.org/0000-0002-6107-4383</orcidid><orcidid>https://orcid.org/0009-0000-9444-3811</orcidid><orcidid>https://orcid.org/0000-0003-0978-4107</orcidid><orcidid>https://orcid.org/0000-0002-6110-3930</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2025-01, Vol.137 (5), p.n/a |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_crossref_primary_10_1002_ange_202417109 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biomimetic materials Biomimetics Bionics Chemical fuels Chemical Reaction Cycle Chemical reactions Conductive Hydrogels Diimide Electrical conductivity Electrical resistivity Energy consumption Equilibrium Far-From-Equilibrium Fibers Fibrils Fuel consumption Hydrogels Naphthalene Naphthalene Diimide Robotics Superstructures Thermodynamic equilibrium Thermodynamics |
title | Fuel‐Driven π‐Conjugated Superstructures to Form Transient Conductive Hydrogels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A44%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuel%E2%80%90Driven%20%CF%80%E2%80%90Conjugated%20Superstructures%20to%20Form%20Transient%20Conductive%20Hydrogels&rft.jtitle=Angewandte%20Chemie&rft.au=Tsironi,%20Ifigeneia&rft.date=2025-01-27&rft.volume=137&rft.issue=5&rft.epage=n/a&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202417109&rft_dat=%3Cproquest_cross%3E3160714645%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3160714645&rft_id=info:pmid/&rfr_iscdi=true |