Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance

Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-10
Hauptverfasser: Ye, Shenghua, Chen, Wenda, Ou, Zhijun, Zhang, Qinghao, Zhang, Jie, Li, Yongliang, Ren, Xiangzhong, Ouyang, Xiaoping, Zheng, Lirong, Yan, Xueqing, Liu, Jianhong, Zhang, Qianling
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Angewandte Chemie
container_volume
creator Ye, Shenghua
Chen, Wenda
Ou, Zhijun
Zhang, Qinghao
Zhang, Jie
Li, Yongliang
Ren, Xiangzhong
Ouyang, Xiaoping
Zheng, Lirong
Yan, Xueqing
Liu, Jianhong
Zhang, Qianling
description Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials.
doi_str_mv 10.1002/ange.202414989
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202414989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202414989</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_ange_2024149893</originalsourceid><addsrcrecordid>eNqVkL1OwzAURi0EEuFnZb4vkGC7KWlGhIqKVKmIVqyRcW_MRYkd2eYnTDwCO2_Hk5BUiJ3pfMt3hsPYmeCZ4FyeK2swk1zmIi9n5R5LxFSKdFJMi32WcJ7n6Uzm5SE7CuGJc34hizJhXwvlLYZA1kB8RFj3Fr2hEEnDjY3ou0b18IDxFdHCZXQt6e-Pz7VWDcK90spqwgDKbmFJZsS8rlFHiA5WXaSW3nEnXr31ZjDc4fZZR3KDa8ALxX733bgG_eBCuEVfO9-O-4Qd1KoJePrLY5ZdzzdXi1R7F4LHuuo8tcr3leDVmKAaE1R_CSb_PvwAHHRo1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</title><source>Access via Wiley Online Library</source><creator>Ye, Shenghua ; Chen, Wenda ; Ou, Zhijun ; Zhang, Qinghao ; Zhang, Jie ; Li, Yongliang ; Ren, Xiangzhong ; Ouyang, Xiaoping ; Zheng, Lirong ; Yan, Xueqing ; Liu, Jianhong ; Zhang, Qianling</creator><creatorcontrib>Ye, Shenghua ; Chen, Wenda ; Ou, Zhijun ; Zhang, Qinghao ; Zhang, Jie ; Li, Yongliang ; Ren, Xiangzhong ; Ouyang, Xiaoping ; Zheng, Lirong ; Yan, Xueqing ; Liu, Jianhong ; Zhang, Qianling</creatorcontrib><description>Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202414989</identifier><language>eng</language><ispartof>Angewandte Chemie, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_ange_2024149893</cites><orcidid>0009-0009-7838-3893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Shenghua</creatorcontrib><creatorcontrib>Chen, Wenda</creatorcontrib><creatorcontrib>Ou, Zhijun</creatorcontrib><creatorcontrib>Zhang, Qinghao</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Yan, Xueqing</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><title>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</title><title>Angewandte Chemie</title><description>Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVkL1OwzAURi0EEuFnZb4vkGC7KWlGhIqKVKmIVqyRcW_MRYkd2eYnTDwCO2_Hk5BUiJ3pfMt3hsPYmeCZ4FyeK2swk1zmIi9n5R5LxFSKdFJMi32WcJ7n6Uzm5SE7CuGJc34hizJhXwvlLYZA1kB8RFj3Fr2hEEnDjY3ou0b18IDxFdHCZXQt6e-Pz7VWDcK90spqwgDKbmFJZsS8rlFHiA5WXaSW3nEnXr31ZjDc4fZZR3KDa8ALxX733bgG_eBCuEVfO9-O-4Qd1KoJePrLY5ZdzzdXi1R7F4LHuuo8tcr3leDVmKAaE1R_CSb_PvwAHHRo1A</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Ye, Shenghua</creator><creator>Chen, Wenda</creator><creator>Ou, Zhijun</creator><creator>Zhang, Qinghao</creator><creator>Zhang, Jie</creator><creator>Li, Yongliang</creator><creator>Ren, Xiangzhong</creator><creator>Ouyang, Xiaoping</creator><creator>Zheng, Lirong</creator><creator>Yan, Xueqing</creator><creator>Liu, Jianhong</creator><creator>Zhang, Qianling</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-7838-3893</orcidid></search><sort><creationdate>20241028</creationdate><title>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</title><author>Ye, Shenghua ; Chen, Wenda ; Ou, Zhijun ; Zhang, Qinghao ; Zhang, Jie ; Li, Yongliang ; Ren, Xiangzhong ; Ouyang, Xiaoping ; Zheng, Lirong ; Yan, Xueqing ; Liu, Jianhong ; Zhang, Qianling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_ange_2024149893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Shenghua</creatorcontrib><creatorcontrib>Chen, Wenda</creatorcontrib><creatorcontrib>Ou, Zhijun</creatorcontrib><creatorcontrib>Zhang, Qinghao</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Yan, Xueqing</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Shenghua</au><au>Chen, Wenda</au><au>Ou, Zhijun</au><au>Zhang, Qinghao</au><au>Zhang, Jie</au><au>Li, Yongliang</au><au>Ren, Xiangzhong</au><au>Ouyang, Xiaoping</au><au>Zheng, Lirong</au><au>Yan, Xueqing</au><au>Liu, Jianhong</au><au>Zhang, Qianling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-10-28</date><risdate>2024</risdate><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials.</abstract><doi>10.1002/ange.202414989</doi><orcidid>https://orcid.org/0009-0009-7838-3893</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2024-10
issn 0044-8249
1521-3757
language eng
recordid cdi_crossref_primary_10_1002_ange_202414989
source Access via Wiley Online Library
title Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20the%20Synergistic%20Interplay%20between%20Atomic%E2%80%90Scale%20Vacancies%20and%20Ligand%20Effect%20to%20Optimize%20the%20Oxygen%20Reduction%20Activity%20and%20Tolerance%20Performance&rft.jtitle=Angewandte%20Chemie&rft.au=Ye,%20Shenghua&rft.date=2024-10-28&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202414989&rft_dat=%3Ccrossref%3E10_1002_ange_202414989%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true