Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance
Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie 2024-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Angewandte Chemie |
container_volume | |
creator | Ye, Shenghua Chen, Wenda Ou, Zhijun Zhang, Qinghao Zhang, Jie Li, Yongliang Ren, Xiangzhong Ouyang, Xiaoping Zheng, Lirong Yan, Xueqing Liu, Jianhong Zhang, Qianling |
description | Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials. |
doi_str_mv | 10.1002/ange.202414989 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_ange_202414989</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_ange_202414989</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_ange_2024149893</originalsourceid><addsrcrecordid>eNqVkL1OwzAURi0EEuFnZb4vkGC7KWlGhIqKVKmIVqyRcW_MRYkd2eYnTDwCO2_Hk5BUiJ3pfMt3hsPYmeCZ4FyeK2swk1zmIi9n5R5LxFSKdFJMi32WcJ7n6Uzm5SE7CuGJc34hizJhXwvlLYZA1kB8RFj3Fr2hEEnDjY3ou0b18IDxFdHCZXQt6e-Pz7VWDcK90spqwgDKbmFJZsS8rlFHiA5WXaSW3nEnXr31ZjDc4fZZR3KDa8ALxX733bgG_eBCuEVfO9-O-4Qd1KoJePrLY5ZdzzdXi1R7F4LHuuo8tcr3leDVmKAaE1R_CSb_PvwAHHRo1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</title><source>Access via Wiley Online Library</source><creator>Ye, Shenghua ; Chen, Wenda ; Ou, Zhijun ; Zhang, Qinghao ; Zhang, Jie ; Li, Yongliang ; Ren, Xiangzhong ; Ouyang, Xiaoping ; Zheng, Lirong ; Yan, Xueqing ; Liu, Jianhong ; Zhang, Qianling</creator><creatorcontrib>Ye, Shenghua ; Chen, Wenda ; Ou, Zhijun ; Zhang, Qinghao ; Zhang, Jie ; Li, Yongliang ; Ren, Xiangzhong ; Ouyang, Xiaoping ; Zheng, Lirong ; Yan, Xueqing ; Liu, Jianhong ; Zhang, Qianling</creatorcontrib><description>Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.202414989</identifier><language>eng</language><ispartof>Angewandte Chemie, 2024-10</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_ange_2024149893</cites><orcidid>0009-0009-7838-3893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ye, Shenghua</creatorcontrib><creatorcontrib>Chen, Wenda</creatorcontrib><creatorcontrib>Ou, Zhijun</creatorcontrib><creatorcontrib>Zhang, Qinghao</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Yan, Xueqing</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><title>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</title><title>Angewandte Chemie</title><description>Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials.</description><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVkL1OwzAURi0EEuFnZb4vkGC7KWlGhIqKVKmIVqyRcW_MRYkd2eYnTDwCO2_Hk5BUiJ3pfMt3hsPYmeCZ4FyeK2swk1zmIi9n5R5LxFSKdFJMi32WcJ7n6Uzm5SE7CuGJc34hizJhXwvlLYZA1kB8RFj3Fr2hEEnDjY3ou0b18IDxFdHCZXQt6e-Pz7VWDcK90spqwgDKbmFJZsS8rlFHiA5WXaSW3nEnXr31ZjDc4fZZR3KDa8ALxX733bgG_eBCuEVfO9-O-4Qd1KoJePrLY5ZdzzdXi1R7F4LHuuo8tcr3leDVmKAaE1R_CSb_PvwAHHRo1A</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Ye, Shenghua</creator><creator>Chen, Wenda</creator><creator>Ou, Zhijun</creator><creator>Zhang, Qinghao</creator><creator>Zhang, Jie</creator><creator>Li, Yongliang</creator><creator>Ren, Xiangzhong</creator><creator>Ouyang, Xiaoping</creator><creator>Zheng, Lirong</creator><creator>Yan, Xueqing</creator><creator>Liu, Jianhong</creator><creator>Zhang, Qianling</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0009-7838-3893</orcidid></search><sort><creationdate>20241028</creationdate><title>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</title><author>Ye, Shenghua ; Chen, Wenda ; Ou, Zhijun ; Zhang, Qinghao ; Zhang, Jie ; Li, Yongliang ; Ren, Xiangzhong ; Ouyang, Xiaoping ; Zheng, Lirong ; Yan, Xueqing ; Liu, Jianhong ; Zhang, Qianling</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_ange_2024149893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Shenghua</creatorcontrib><creatorcontrib>Chen, Wenda</creatorcontrib><creatorcontrib>Ou, Zhijun</creatorcontrib><creatorcontrib>Zhang, Qinghao</creatorcontrib><creatorcontrib>Zhang, Jie</creatorcontrib><creatorcontrib>Li, Yongliang</creatorcontrib><creatorcontrib>Ren, Xiangzhong</creatorcontrib><creatorcontrib>Ouyang, Xiaoping</creatorcontrib><creatorcontrib>Zheng, Lirong</creatorcontrib><creatorcontrib>Yan, Xueqing</creatorcontrib><creatorcontrib>Liu, Jianhong</creatorcontrib><creatorcontrib>Zhang, Qianling</creatorcontrib><collection>CrossRef</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Shenghua</au><au>Chen, Wenda</au><au>Ou, Zhijun</au><au>Zhang, Qinghao</au><au>Zhang, Jie</au><au>Li, Yongliang</au><au>Ren, Xiangzhong</au><au>Ouyang, Xiaoping</au><au>Zheng, Lirong</au><au>Yan, Xueqing</au><au>Liu, Jianhong</au><au>Zhang, Qianling</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance</atitle><jtitle>Angewandte Chemie</jtitle><date>2024-10-28</date><risdate>2024</risdate><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Defect engineering is an effective strategy for regulating the electrocatalysis of nanomaterials, yet it is seldom considered for modulating Pt‐based electrocatalysts for the oxygen reduction reaction (ORR). In this study, we designed Ni‐doped vacancy‐rich Pt nanoparticles anchored on nitrogen‐doped graphene (Vac‐NiPt NPs/NG) with a low Pt loading of 3.5 wt . % and a Ni/Pt ratio of 0.038 : 1. Physical characterizations confirmed the presence of abundant atomic‐scale vacancies in the Pt NPs induces long‐range lattice distortions, and the Ni dopant generates a ligand effect resulting in electronic transfer from Ni to Pt. Experimental results and theoretical calculations indicated that atomic‐scale vacancies mainly contributed the tolerance performances towards CO and CH 3 OH, the ligand effect derived from a tiny of Ni dopant accelerated the transformation from *O to *OH species, thereby improved the ORR activity without compromising the tolerance capabilities. Benefiting from the synergistic interplay between atomic‐scale vacancies and ligand effect, as‐prepared Vac‐NiPt NPs/NG exhibited improved ORR activity, sufficient tolerance capabilities, and excellent durability. This study offers a new avenue for modulating the electrocatalytic activity of metal‐based nanomaterials.</abstract><doi>10.1002/ange.202414989</doi><orcidid>https://orcid.org/0009-0009-7838-3893</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2024-10 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_crossref_primary_10_1002_ange_202414989 |
source | Access via Wiley Online Library |
title | Harnessing the Synergistic Interplay between Atomic‐Scale Vacancies and Ligand Effect to Optimize the Oxygen Reduction Activity and Tolerance Performance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A41%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Harnessing%20the%20Synergistic%20Interplay%20between%20Atomic%E2%80%90Scale%20Vacancies%20and%20Ligand%20Effect%20to%20Optimize%20the%20Oxygen%20Reduction%20Activity%20and%20Tolerance%20Performance&rft.jtitle=Angewandte%20Chemie&rft.au=Ye,%20Shenghua&rft.date=2024-10-28&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.202414989&rft_dat=%3Ccrossref%3E10_1002_ange_202414989%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |