Stabilizing CO 2 Intermediates at the Acidic Interface using Molecularly Dispersed Cobalt Phthalocyanine as Catalysts for CO 2 Reduction

CO 2 electroreduction (CO 2 R) operating in acidic media circumvents the problems of carbonate formation and CO 2 crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO 2 R, while they cause the inevitable issue of salt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie 2024-02, Vol.136 (8)
Hauptverfasser: Feng, Shijia, Wang, Xiaojun, Cheng, Dongfang, Luo, Yao, Shen, Mengxin, Wang, Jingyang, Zhao, Wei, Fang, Susu, Zheng, Hongzhi, Ji, Liyao, Zhang, Xing, Xu, Weigao, Liang, Yongye, Sautet, Philippe, Zhu, Jia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:CO 2 electroreduction (CO 2 R) operating in acidic media circumvents the problems of carbonate formation and CO 2 crossover in neutral/alkaline electrolyzers. Alkali cations have been universally recognized as indispensable components for acidic CO 2 R, while they cause the inevitable issue of salt precipitation. It is therefore desirable to realize alkali‐cation‐free CO 2 R in pure acid. However, without alkali cations, stabilizing *CO 2 intermediates by catalyst itself at the acidic interface poses as a challenge. Herein, we first demonstrate that a carbon nanotube‐supported molecularly dispersed cobalt phthalocyanine (CoPc@CNT) catalyst provides the Co single‐atom active site with energetically localized d states to strengthen the adsorbate‐surface interactions, which stabilizes *CO 2 intermediates at the acidic interface (pH=1). As a result, we realize CO 2 conversion to CO in pure acid with a faradaic efficiency of 60 % at pH=2 in flow cell. Furthermore, CO 2 is successfully converted in cation exchanged membrane‐based electrode assembly with a faradaic efficiency of 73 %. For CoPc@CNT, acidic conditions also promote the intrinsic activity of CO 2 R compared to alkaline conditions, since the potential‐limiting step, *CO 2 to *COOH, is pH‐dependent. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the designs of catalysts and devices for acidic CO 2 R.
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.202317942