The variable viscoelasticity oscillator

The complex dynamics of a variable viscoelasticity oscillator is studied using the novel concept of Variable‐Order (VO) Calculus. The damping force in the oscillator varies continuously between the elastic and viscous regimes depending on the position of the mass. The oscillator considered here is c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annalen der Physik 2005-06, Vol.14 (6), p.378-389
Hauptverfasser: Soon, C.M., Coimbra, C.F.M., Kobayashi, M.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 389
container_issue 6
container_start_page 378
container_title Annalen der Physik
container_volume 14
creator Soon, C.M.
Coimbra, C.F.M.
Kobayashi, M.H.
description The complex dynamics of a variable viscoelasticity oscillator is studied using the novel concept of Variable‐Order (VO) Calculus. The damping force in the oscillator varies continuously between the elastic and viscous regimes depending on the position of the mass. The oscillator considered here is composed of a linear spring of stiffness k that inputs a restitutive force Fk = ‐k x, a VO damper of order q(x(t)) that generates a damping force Fq = ‐cq Dq(x(t)) x, and a mass m. A modified Runge‐Kutta method is used in conjunction with a trapezoidal numerical integration technique to yield a second‐order accurate method for the solution of the resulting VO Differential Equation (VODE). The VO oscillator is also modelled using a Constant Order (CO) formulation where a number of CO fractional order differentials are weighted to simulate the VO behavior. The CO formulation asymptotically approaches the VO results when a relatively large number of weights is used. For the viscoelastic range of 0 ≤ q ≤ 1, the dynamics of the oscillator is well approximated by the CO formulation when 5 or more fractional terms are included (e.g., 0, 1/4, 1/2, 3/4, and 1).
doi_str_mv 10.1002/andp.200410140
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_andp_200410140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_HT7V3F0W_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3270-8dafbeee9c4f74205296191177d6036e4d93cc4b682ed66e65de3d4fe12eb3423</originalsourceid><addsrcrecordid>eNqFjz1PwzAURS0EElXpytyNKeX5I3YyVoW2SFVhCHS0HPtFGAKp7AjIv2-qoIqN6d0n3XOlQ8g1hRkFYLfm0-1nDEBQoALOyIimjCY8y_JzMgIA3mcQl2QS41v_QgoMmBiRm-IVp18meFPWffDRNlib2Hrr227aROvr2rRNuCIXlakjTn7vmDwv74vFOtk8rh4W801iOVOQZM5UJSLmVlRKMEhZLmlOqVJOApcoXM6tFaXMGDopUaYOuRMVUoYlF4yPyWzYtaGJMWCl98F_mNBpCvpoqo-m-mTaA_kAfPsau3_aer69e_rLJgPrY4s_J9aEdy0VV6nebVd6XagXvoSd5vwA_YRmAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The variable viscoelasticity oscillator</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Soon, C.M. ; Coimbra, C.F.M. ; Kobayashi, M.H.</creator><creatorcontrib>Soon, C.M. ; Coimbra, C.F.M. ; Kobayashi, M.H.</creatorcontrib><description>The complex dynamics of a variable viscoelasticity oscillator is studied using the novel concept of Variable‐Order (VO) Calculus. The damping force in the oscillator varies continuously between the elastic and viscous regimes depending on the position of the mass. The oscillator considered here is composed of a linear spring of stiffness k that inputs a restitutive force Fk = ‐k x, a VO damper of order q(x(t)) that generates a damping force Fq = ‐cq Dq(x(t)) x, and a mass m. A modified Runge‐Kutta method is used in conjunction with a trapezoidal numerical integration technique to yield a second‐order accurate method for the solution of the resulting VO Differential Equation (VODE). The VO oscillator is also modelled using a Constant Order (CO) formulation where a number of CO fractional order differentials are weighted to simulate the VO behavior. The CO formulation asymptotically approaches the VO results when a relatively large number of weights is used. For the viscoelastic range of 0 ≤ q ≤ 1, the dynamics of the oscillator is well approximated by the CO formulation when 5 or more fractional terms are included (e.g., 0, 1/4, 1/2, 3/4, and 1).</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.200410140</identifier><language>eng</language><publisher>Berlin: WILEY-VCH Verlag</publisher><subject>fractional calculus ; memory effects ; Variable-order calculus ; viscoelasticity</subject><ispartof>Annalen der Physik, 2005-06, Vol.14 (6), p.378-389</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3270-8dafbeee9c4f74205296191177d6036e4d93cc4b682ed66e65de3d4fe12eb3423</citedby><cites>FETCH-LOGICAL-c3270-8dafbeee9c4f74205296191177d6036e4d93cc4b682ed66e65de3d4fe12eb3423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fandp.200410140$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fandp.200410140$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Soon, C.M.</creatorcontrib><creatorcontrib>Coimbra, C.F.M.</creatorcontrib><creatorcontrib>Kobayashi, M.H.</creatorcontrib><title>The variable viscoelasticity oscillator</title><title>Annalen der Physik</title><addtitle>Ann. Phys</addtitle><description>The complex dynamics of a variable viscoelasticity oscillator is studied using the novel concept of Variable‐Order (VO) Calculus. The damping force in the oscillator varies continuously between the elastic and viscous regimes depending on the position of the mass. The oscillator considered here is composed of a linear spring of stiffness k that inputs a restitutive force Fk = ‐k x, a VO damper of order q(x(t)) that generates a damping force Fq = ‐cq Dq(x(t)) x, and a mass m. A modified Runge‐Kutta method is used in conjunction with a trapezoidal numerical integration technique to yield a second‐order accurate method for the solution of the resulting VO Differential Equation (VODE). The VO oscillator is also modelled using a Constant Order (CO) formulation where a number of CO fractional order differentials are weighted to simulate the VO behavior. The CO formulation asymptotically approaches the VO results when a relatively large number of weights is used. For the viscoelastic range of 0 ≤ q ≤ 1, the dynamics of the oscillator is well approximated by the CO formulation when 5 or more fractional terms are included (e.g., 0, 1/4, 1/2, 3/4, and 1).</description><subject>fractional calculus</subject><subject>memory effects</subject><subject>Variable-order calculus</subject><subject>viscoelasticity</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFjz1PwzAURS0EElXpytyNKeX5I3YyVoW2SFVhCHS0HPtFGAKp7AjIv2-qoIqN6d0n3XOlQ8g1hRkFYLfm0-1nDEBQoALOyIimjCY8y_JzMgIA3mcQl2QS41v_QgoMmBiRm-IVp18meFPWffDRNlib2Hrr227aROvr2rRNuCIXlakjTn7vmDwv74vFOtk8rh4W801iOVOQZM5UJSLmVlRKMEhZLmlOqVJOApcoXM6tFaXMGDopUaYOuRMVUoYlF4yPyWzYtaGJMWCl98F_mNBpCvpoqo-m-mTaA_kAfPsau3_aer69e_rLJgPrY4s_J9aEdy0VV6nebVd6XagXvoSd5vwA_YRmAg</recordid><startdate>20050601</startdate><enddate>20050601</enddate><creator>Soon, C.M.</creator><creator>Coimbra, C.F.M.</creator><creator>Kobayashi, M.H.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050601</creationdate><title>The variable viscoelasticity oscillator</title><author>Soon, C.M. ; Coimbra, C.F.M. ; Kobayashi, M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3270-8dafbeee9c4f74205296191177d6036e4d93cc4b682ed66e65de3d4fe12eb3423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>fractional calculus</topic><topic>memory effects</topic><topic>Variable-order calculus</topic><topic>viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soon, C.M.</creatorcontrib><creatorcontrib>Coimbra, C.F.M.</creatorcontrib><creatorcontrib>Kobayashi, M.H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soon, C.M.</au><au>Coimbra, C.F.M.</au><au>Kobayashi, M.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The variable viscoelasticity oscillator</atitle><jtitle>Annalen der Physik</jtitle><addtitle>Ann. Phys</addtitle><date>2005-06-01</date><risdate>2005</risdate><volume>14</volume><issue>6</issue><spage>378</spage><epage>389</epage><pages>378-389</pages><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>The complex dynamics of a variable viscoelasticity oscillator is studied using the novel concept of Variable‐Order (VO) Calculus. The damping force in the oscillator varies continuously between the elastic and viscous regimes depending on the position of the mass. The oscillator considered here is composed of a linear spring of stiffness k that inputs a restitutive force Fk = ‐k x, a VO damper of order q(x(t)) that generates a damping force Fq = ‐cq Dq(x(t)) x, and a mass m. A modified Runge‐Kutta method is used in conjunction with a trapezoidal numerical integration technique to yield a second‐order accurate method for the solution of the resulting VO Differential Equation (VODE). The VO oscillator is also modelled using a Constant Order (CO) formulation where a number of CO fractional order differentials are weighted to simulate the VO behavior. The CO formulation asymptotically approaches the VO results when a relatively large number of weights is used. For the viscoelastic range of 0 ≤ q ≤ 1, the dynamics of the oscillator is well approximated by the CO formulation when 5 or more fractional terms are included (e.g., 0, 1/4, 1/2, 3/4, and 1).</abstract><cop>Berlin</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/andp.200410140</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2005-06, Vol.14 (6), p.378-389
issn 0003-3804
1521-3889
language eng
recordid cdi_crossref_primary_10_1002_andp_200410140
source Wiley Online Library Journals Frontfile Complete
subjects fractional calculus
memory effects
Variable-order calculus
viscoelasticity
title The variable viscoelasticity oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T00%3A55%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20variable%20viscoelasticity%20oscillator&rft.jtitle=Annalen%20der%20Physik&rft.au=Soon,%20C.M.&rft.date=2005-06-01&rft.volume=14&rft.issue=6&rft.spage=378&rft.epage=389&rft.pages=378-389&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.200410140&rft_dat=%3Cistex_cross%3Eark_67375_WNG_HT7V3F0W_3%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true