Genome‐wide Interaction and Stratified Study with Smoking Identifies Association of APAF1 and MIXL1/LIN9 with Alzheimer’s Disease

Background Alzheimer’s disease (AD) has both genetic and environmental risk factors. Gene‐environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD. To identify genetic‐smoking‐related associations with AD, we conducted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2024-12, Vol.20 (S1), p.n/a
Hauptverfasser: Dacey, Ryan, Han, Xudong, Moore, Mackenzie R, Chung, Jaeyoon, Durape, Shruti, Rosenthaler, Max, Uretsky, Madeline, Abdolmohammadi, Bobak, Lee, Annie J., Brickman, Adam M., Hohman, Timothy J., Cuccaro, Michael L., Bennett, David A., Crane, Paul K., Kamboh, M. Ilyas, Kukull, Walter A., Au, Rhoda, Haines, Jonathan L., Pericak‐Vance, Margaret A., Schellenberg, Gerard D., Mayeux, Richard, Lunetta, Kathryn L., Farrer, Lindsay A., Mez, Jesse
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S1
container_start_page
container_title Alzheimer's & dementia
container_volume 20
creator Dacey, Ryan
Han, Xudong
Moore, Mackenzie R
Chung, Jaeyoon
Durape, Shruti
Rosenthaler, Max
Uretsky, Madeline
Abdolmohammadi, Bobak
Lee, Annie J.
Brickman, Adam M.
Hohman, Timothy J.
Cuccaro, Michael L.
Bennett, David A.
Crane, Paul K.
Kamboh, M. Ilyas
Kukull, Walter A.
Au, Rhoda
Haines, Jonathan L.
Pericak‐Vance, Margaret A.
Schellenberg, Gerard D.
Mayeux, Richard
Lunetta, Kathryn L.
Farrer, Lindsay A.
Mez, Jesse
description Background Alzheimer’s disease (AD) has both genetic and environmental risk factors. Gene‐environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD. To identify genetic‐smoking‐related associations with AD, we conducted a genome‐wide association study (GWAS) assessing a SNP‐smoking interaction and stratified analysis by smoking status. Method Lifetime smoking data were available and analyzed among 22,030 non‐Hispanic White (NHW; 8,232 cases; 13,798 controls) and 3,126 African American (AFA; 921 cases; 2,205 controls) participants from the AD Genetic Consortium and the Framingham Heart Study. “Ever smoking” status was considered as a dichotomous exposure, defined by current smoking status or past history of smoking. Across 35 datasets, we conducted GWAS with two approaches: inclusion of a SNP‐by‐smoking interaction term and stratification by smoking status (12,080 smokers, 13,428 non‐smokers). MAGEE was used to estimate SNP‐by‐smoking interaction effects and SAIGE was used to estimate SNP effects in stratified analysis. Age, sex, and principal components for population structure were included as covariates. METAL was used for inverse‐variance weighted meta‐analysis across datasets to estimate within‐ and cross‐ancestry effects. Result The stratified analysis identified a genome‐wide significant association among smokers in APAF1 on chromosome 12 (top SNP: rs12368451; smokers: MAF = 0.44, p = 2.2 × 10‐8, OR = 1.20; non‐smokers: MAF = 0.44, p = 0.97, OR = 1.00). Effects were present in both ancestry groups (NHW: MAF = 0.45, p = 6.1 × 10‐6, OR = 1.16; AFA: MAF = 0.35, p = 6.6 × 10‐5, OR = 1.46). APAF1 has been linked to gene‐smoking interaction for non‐AD related outcomes. A neighboring gene, ANKS1B, is highly expressed in the brain, interacts with amyloid‐b precursor protein, and has shown GWAS signals for smoking initiation and cognitive ability. We also identified a genome‐wide significant SNP‐by‐smoking interaction in the MIXL1/LIN9 region on chromosome 1 (top SNP: rs1091961, MAF = 0.35, p = 4.9 × 10‐8, βSNP*smoking = 0.24; smokers: OR = 1.12, p = 0.0006; non‐smokers: OR = 0.89, p = 0.0001). Within LIN9, several SNPs in linkage disequilibrium with rs1091961 have shown sub‐genome wide association with nicotine dependence. Conclusion In this gene‐smoking interaction and smoking‐stratified GWAS of AD, we identified two promising loci. These findings highlight the strength of util
doi_str_mv 10.1002/alz.091434
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_alz_091434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ091434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c774-e7ea1c7c1fa6ca166535a4a161cc94af72e62d3cbacd04cf169e901fdece73193</originalsourceid><addsrcrecordid>eNp9kLtOwzAUhi0EEqWw8ASekdL65GYyRgVKpHCR2gGxRMY-poZckB1UtVMXdlZer09C21SMTOeXzv_9w0fIObABMOYPRbkcsATCIDwgPYgi34t8nhz-5ZgdkxPn3hgL2SVEPfI1xrqpcL36nhuFNKtbtEK2pqmpqBWdtFa0Rhvcxk-1oHPTzuikat5N_UozhfXu62jqXCON2IGNpuljegO7hbvsKYdhnt0nHZuWyxmaCu169ePolXEoHJ6SIy1Kh2f72yfTm-vp6NbLH8bZKM09yXnoIUcBkkvQIpYC4jgKIhFuAkiZhEJzH2NfBfJFSMVCqSFOMGGgFUrkASRBn1x0s9I2zlnUxYc1lbCLAlix9Vds_BWdv00ZuvLclLj4p1mk-fOe-QW66HX2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genome‐wide Interaction and Stratified Study with Smoking Identifies Association of APAF1 and MIXL1/LIN9 with Alzheimer’s Disease</title><source>PubMed Central Open Access</source><source>Wiley Online Library Open Access</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><creator>Dacey, Ryan ; Han, Xudong ; Moore, Mackenzie R ; Chung, Jaeyoon ; Durape, Shruti ; Rosenthaler, Max ; Uretsky, Madeline ; Abdolmohammadi, Bobak ; Lee, Annie J. ; Brickman, Adam M. ; Hohman, Timothy J. ; Cuccaro, Michael L. ; Bennett, David A. ; Crane, Paul K. ; Kamboh, M. Ilyas ; Kukull, Walter A. ; Au, Rhoda ; Haines, Jonathan L. ; Pericak‐Vance, Margaret A. ; Schellenberg, Gerard D. ; Mayeux, Richard ; Lunetta, Kathryn L. ; Farrer, Lindsay A. ; Mez, Jesse</creator><creatorcontrib>Dacey, Ryan ; Han, Xudong ; Moore, Mackenzie R ; Chung, Jaeyoon ; Durape, Shruti ; Rosenthaler, Max ; Uretsky, Madeline ; Abdolmohammadi, Bobak ; Lee, Annie J. ; Brickman, Adam M. ; Hohman, Timothy J. ; Cuccaro, Michael L. ; Bennett, David A. ; Crane, Paul K. ; Kamboh, M. Ilyas ; Kukull, Walter A. ; Au, Rhoda ; Haines, Jonathan L. ; Pericak‐Vance, Margaret A. ; Schellenberg, Gerard D. ; Mayeux, Richard ; Lunetta, Kathryn L. ; Farrer, Lindsay A. ; Mez, Jesse</creatorcontrib><description>Background Alzheimer’s disease (AD) has both genetic and environmental risk factors. Gene‐environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD. To identify genetic‐smoking‐related associations with AD, we conducted a genome‐wide association study (GWAS) assessing a SNP‐smoking interaction and stratified analysis by smoking status. Method Lifetime smoking data were available and analyzed among 22,030 non‐Hispanic White (NHW; 8,232 cases; 13,798 controls) and 3,126 African American (AFA; 921 cases; 2,205 controls) participants from the AD Genetic Consortium and the Framingham Heart Study. “Ever smoking” status was considered as a dichotomous exposure, defined by current smoking status or past history of smoking. Across 35 datasets, we conducted GWAS with two approaches: inclusion of a SNP‐by‐smoking interaction term and stratification by smoking status (12,080 smokers, 13,428 non‐smokers). MAGEE was used to estimate SNP‐by‐smoking interaction effects and SAIGE was used to estimate SNP effects in stratified analysis. Age, sex, and principal components for population structure were included as covariates. METAL was used for inverse‐variance weighted meta‐analysis across datasets to estimate within‐ and cross‐ancestry effects. Result The stratified analysis identified a genome‐wide significant association among smokers in APAF1 on chromosome 12 (top SNP: rs12368451; smokers: MAF = 0.44, p = 2.2 × 10‐8, OR = 1.20; non‐smokers: MAF = 0.44, p = 0.97, OR = 1.00). Effects were present in both ancestry groups (NHW: MAF = 0.45, p = 6.1 × 10‐6, OR = 1.16; AFA: MAF = 0.35, p = 6.6 × 10‐5, OR = 1.46). APAF1 has been linked to gene‐smoking interaction for non‐AD related outcomes. A neighboring gene, ANKS1B, is highly expressed in the brain, interacts with amyloid‐b precursor protein, and has shown GWAS signals for smoking initiation and cognitive ability. We also identified a genome‐wide significant SNP‐by‐smoking interaction in the MIXL1/LIN9 region on chromosome 1 (top SNP: rs1091961, MAF = 0.35, p = 4.9 × 10‐8, βSNP*smoking = 0.24; smokers: OR = 1.12, p = 0.0006; non‐smokers: OR = 0.89, p = 0.0001). Within LIN9, several SNPs in linkage disequilibrium with rs1091961 have shown sub‐genome wide association with nicotine dependence. Conclusion In this gene‐smoking interaction and smoking‐stratified GWAS of AD, we identified two promising loci. These findings highlight the strength of utilizing cross‐ancestry datasets and considering both genetic and environmental factors together towards a personalized medicine approach to AD.</description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.091434</identifier><language>eng</language><ispartof>Alzheimer's &amp; dementia, 2024-12, Vol.20 (S1), p.n/a</ispartof><rights>2024 The Alzheimer's Association. published by Wiley Periodicals LLC on behalf of Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Falz.091434$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Falz.091434$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1416,11561,27923,27924,45573,45574,46051,46475</link.rule.ids></links><search><creatorcontrib>Dacey, Ryan</creatorcontrib><creatorcontrib>Han, Xudong</creatorcontrib><creatorcontrib>Moore, Mackenzie R</creatorcontrib><creatorcontrib>Chung, Jaeyoon</creatorcontrib><creatorcontrib>Durape, Shruti</creatorcontrib><creatorcontrib>Rosenthaler, Max</creatorcontrib><creatorcontrib>Uretsky, Madeline</creatorcontrib><creatorcontrib>Abdolmohammadi, Bobak</creatorcontrib><creatorcontrib>Lee, Annie J.</creatorcontrib><creatorcontrib>Brickman, Adam M.</creatorcontrib><creatorcontrib>Hohman, Timothy J.</creatorcontrib><creatorcontrib>Cuccaro, Michael L.</creatorcontrib><creatorcontrib>Bennett, David A.</creatorcontrib><creatorcontrib>Crane, Paul K.</creatorcontrib><creatorcontrib>Kamboh, M. Ilyas</creatorcontrib><creatorcontrib>Kukull, Walter A.</creatorcontrib><creatorcontrib>Au, Rhoda</creatorcontrib><creatorcontrib>Haines, Jonathan L.</creatorcontrib><creatorcontrib>Pericak‐Vance, Margaret A.</creatorcontrib><creatorcontrib>Schellenberg, Gerard D.</creatorcontrib><creatorcontrib>Mayeux, Richard</creatorcontrib><creatorcontrib>Lunetta, Kathryn L.</creatorcontrib><creatorcontrib>Farrer, Lindsay A.</creatorcontrib><creatorcontrib>Mez, Jesse</creatorcontrib><title>Genome‐wide Interaction and Stratified Study with Smoking Identifies Association of APAF1 and MIXL1/LIN9 with Alzheimer’s Disease</title><title>Alzheimer's &amp; dementia</title><description>Background Alzheimer’s disease (AD) has both genetic and environmental risk factors. Gene‐environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD. To identify genetic‐smoking‐related associations with AD, we conducted a genome‐wide association study (GWAS) assessing a SNP‐smoking interaction and stratified analysis by smoking status. Method Lifetime smoking data were available and analyzed among 22,030 non‐Hispanic White (NHW; 8,232 cases; 13,798 controls) and 3,126 African American (AFA; 921 cases; 2,205 controls) participants from the AD Genetic Consortium and the Framingham Heart Study. “Ever smoking” status was considered as a dichotomous exposure, defined by current smoking status or past history of smoking. Across 35 datasets, we conducted GWAS with two approaches: inclusion of a SNP‐by‐smoking interaction term and stratification by smoking status (12,080 smokers, 13,428 non‐smokers). MAGEE was used to estimate SNP‐by‐smoking interaction effects and SAIGE was used to estimate SNP effects in stratified analysis. Age, sex, and principal components for population structure were included as covariates. METAL was used for inverse‐variance weighted meta‐analysis across datasets to estimate within‐ and cross‐ancestry effects. Result The stratified analysis identified a genome‐wide significant association among smokers in APAF1 on chromosome 12 (top SNP: rs12368451; smokers: MAF = 0.44, p = 2.2 × 10‐8, OR = 1.20; non‐smokers: MAF = 0.44, p = 0.97, OR = 1.00). Effects were present in both ancestry groups (NHW: MAF = 0.45, p = 6.1 × 10‐6, OR = 1.16; AFA: MAF = 0.35, p = 6.6 × 10‐5, OR = 1.46). APAF1 has been linked to gene‐smoking interaction for non‐AD related outcomes. A neighboring gene, ANKS1B, is highly expressed in the brain, interacts with amyloid‐b precursor protein, and has shown GWAS signals for smoking initiation and cognitive ability. We also identified a genome‐wide significant SNP‐by‐smoking interaction in the MIXL1/LIN9 region on chromosome 1 (top SNP: rs1091961, MAF = 0.35, p = 4.9 × 10‐8, βSNP*smoking = 0.24; smokers: OR = 1.12, p = 0.0006; non‐smokers: OR = 0.89, p = 0.0001). Within LIN9, several SNPs in linkage disequilibrium with rs1091961 have shown sub‐genome wide association with nicotine dependence. Conclusion In this gene‐smoking interaction and smoking‐stratified GWAS of AD, we identified two promising loci. These findings highlight the strength of utilizing cross‐ancestry datasets and considering both genetic and environmental factors together towards a personalized medicine approach to AD.</description><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp9kLtOwzAUhi0EEqWw8ASekdL65GYyRgVKpHCR2gGxRMY-poZckB1UtVMXdlZer09C21SMTOeXzv_9w0fIObABMOYPRbkcsATCIDwgPYgi34t8nhz-5ZgdkxPn3hgL2SVEPfI1xrqpcL36nhuFNKtbtEK2pqmpqBWdtFa0Rhvcxk-1oHPTzuikat5N_UozhfXu62jqXCON2IGNpuljegO7hbvsKYdhnt0nHZuWyxmaCu169ePolXEoHJ6SIy1Kh2f72yfTm-vp6NbLH8bZKM09yXnoIUcBkkvQIpYC4jgKIhFuAkiZhEJzH2NfBfJFSMVCqSFOMGGgFUrkASRBn1x0s9I2zlnUxYc1lbCLAlix9Vds_BWdv00ZuvLclLj4p1mk-fOe-QW66HX2</recordid><startdate>202412</startdate><enddate>202412</enddate><creator>Dacey, Ryan</creator><creator>Han, Xudong</creator><creator>Moore, Mackenzie R</creator><creator>Chung, Jaeyoon</creator><creator>Durape, Shruti</creator><creator>Rosenthaler, Max</creator><creator>Uretsky, Madeline</creator><creator>Abdolmohammadi, Bobak</creator><creator>Lee, Annie J.</creator><creator>Brickman, Adam M.</creator><creator>Hohman, Timothy J.</creator><creator>Cuccaro, Michael L.</creator><creator>Bennett, David A.</creator><creator>Crane, Paul K.</creator><creator>Kamboh, M. Ilyas</creator><creator>Kukull, Walter A.</creator><creator>Au, Rhoda</creator><creator>Haines, Jonathan L.</creator><creator>Pericak‐Vance, Margaret A.</creator><creator>Schellenberg, Gerard D.</creator><creator>Mayeux, Richard</creator><creator>Lunetta, Kathryn L.</creator><creator>Farrer, Lindsay A.</creator><creator>Mez, Jesse</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202412</creationdate><title>Genome‐wide Interaction and Stratified Study with Smoking Identifies Association of APAF1 and MIXL1/LIN9 with Alzheimer’s Disease</title><author>Dacey, Ryan ; Han, Xudong ; Moore, Mackenzie R ; Chung, Jaeyoon ; Durape, Shruti ; Rosenthaler, Max ; Uretsky, Madeline ; Abdolmohammadi, Bobak ; Lee, Annie J. ; Brickman, Adam M. ; Hohman, Timothy J. ; Cuccaro, Michael L. ; Bennett, David A. ; Crane, Paul K. ; Kamboh, M. Ilyas ; Kukull, Walter A. ; Au, Rhoda ; Haines, Jonathan L. ; Pericak‐Vance, Margaret A. ; Schellenberg, Gerard D. ; Mayeux, Richard ; Lunetta, Kathryn L. ; Farrer, Lindsay A. ; Mez, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c774-e7ea1c7c1fa6ca166535a4a161cc94af72e62d3cbacd04cf169e901fdece73193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dacey, Ryan</creatorcontrib><creatorcontrib>Han, Xudong</creatorcontrib><creatorcontrib>Moore, Mackenzie R</creatorcontrib><creatorcontrib>Chung, Jaeyoon</creatorcontrib><creatorcontrib>Durape, Shruti</creatorcontrib><creatorcontrib>Rosenthaler, Max</creatorcontrib><creatorcontrib>Uretsky, Madeline</creatorcontrib><creatorcontrib>Abdolmohammadi, Bobak</creatorcontrib><creatorcontrib>Lee, Annie J.</creatorcontrib><creatorcontrib>Brickman, Adam M.</creatorcontrib><creatorcontrib>Hohman, Timothy J.</creatorcontrib><creatorcontrib>Cuccaro, Michael L.</creatorcontrib><creatorcontrib>Bennett, David A.</creatorcontrib><creatorcontrib>Crane, Paul K.</creatorcontrib><creatorcontrib>Kamboh, M. Ilyas</creatorcontrib><creatorcontrib>Kukull, Walter A.</creatorcontrib><creatorcontrib>Au, Rhoda</creatorcontrib><creatorcontrib>Haines, Jonathan L.</creatorcontrib><creatorcontrib>Pericak‐Vance, Margaret A.</creatorcontrib><creatorcontrib>Schellenberg, Gerard D.</creatorcontrib><creatorcontrib>Mayeux, Richard</creatorcontrib><creatorcontrib>Lunetta, Kathryn L.</creatorcontrib><creatorcontrib>Farrer, Lindsay A.</creatorcontrib><creatorcontrib>Mez, Jesse</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dacey, Ryan</au><au>Han, Xudong</au><au>Moore, Mackenzie R</au><au>Chung, Jaeyoon</au><au>Durape, Shruti</au><au>Rosenthaler, Max</au><au>Uretsky, Madeline</au><au>Abdolmohammadi, Bobak</au><au>Lee, Annie J.</au><au>Brickman, Adam M.</au><au>Hohman, Timothy J.</au><au>Cuccaro, Michael L.</au><au>Bennett, David A.</au><au>Crane, Paul K.</au><au>Kamboh, M. Ilyas</au><au>Kukull, Walter A.</au><au>Au, Rhoda</au><au>Haines, Jonathan L.</au><au>Pericak‐Vance, Margaret A.</au><au>Schellenberg, Gerard D.</au><au>Mayeux, Richard</au><au>Lunetta, Kathryn L.</au><au>Farrer, Lindsay A.</au><au>Mez, Jesse</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome‐wide Interaction and Stratified Study with Smoking Identifies Association of APAF1 and MIXL1/LIN9 with Alzheimer’s Disease</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><date>2024-12</date><risdate>2024</risdate><volume>20</volume><issue>S1</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract>Background Alzheimer’s disease (AD) has both genetic and environmental risk factors. Gene‐environment interaction may help explain some missing heritability. There is strong evidence for cigarette smoking as a risk factor for AD. To identify genetic‐smoking‐related associations with AD, we conducted a genome‐wide association study (GWAS) assessing a SNP‐smoking interaction and stratified analysis by smoking status. Method Lifetime smoking data were available and analyzed among 22,030 non‐Hispanic White (NHW; 8,232 cases; 13,798 controls) and 3,126 African American (AFA; 921 cases; 2,205 controls) participants from the AD Genetic Consortium and the Framingham Heart Study. “Ever smoking” status was considered as a dichotomous exposure, defined by current smoking status or past history of smoking. Across 35 datasets, we conducted GWAS with two approaches: inclusion of a SNP‐by‐smoking interaction term and stratification by smoking status (12,080 smokers, 13,428 non‐smokers). MAGEE was used to estimate SNP‐by‐smoking interaction effects and SAIGE was used to estimate SNP effects in stratified analysis. Age, sex, and principal components for population structure were included as covariates. METAL was used for inverse‐variance weighted meta‐analysis across datasets to estimate within‐ and cross‐ancestry effects. Result The stratified analysis identified a genome‐wide significant association among smokers in APAF1 on chromosome 12 (top SNP: rs12368451; smokers: MAF = 0.44, p = 2.2 × 10‐8, OR = 1.20; non‐smokers: MAF = 0.44, p = 0.97, OR = 1.00). Effects were present in both ancestry groups (NHW: MAF = 0.45, p = 6.1 × 10‐6, OR = 1.16; AFA: MAF = 0.35, p = 6.6 × 10‐5, OR = 1.46). APAF1 has been linked to gene‐smoking interaction for non‐AD related outcomes. A neighboring gene, ANKS1B, is highly expressed in the brain, interacts with amyloid‐b precursor protein, and has shown GWAS signals for smoking initiation and cognitive ability. We also identified a genome‐wide significant SNP‐by‐smoking interaction in the MIXL1/LIN9 region on chromosome 1 (top SNP: rs1091961, MAF = 0.35, p = 4.9 × 10‐8, βSNP*smoking = 0.24; smokers: OR = 1.12, p = 0.0006; non‐smokers: OR = 0.89, p = 0.0001). Within LIN9, several SNPs in linkage disequilibrium with rs1091961 have shown sub‐genome wide association with nicotine dependence. Conclusion In this gene‐smoking interaction and smoking‐stratified GWAS of AD, we identified two promising loci. These findings highlight the strength of utilizing cross‐ancestry datasets and considering both genetic and environmental factors together towards a personalized medicine approach to AD.</abstract><doi>10.1002/alz.091434</doi><tpages>2</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2024-12, Vol.20 (S1), p.n/a
issn 1552-5260
1552-5279
language eng
recordid cdi_crossref_primary_10_1002_alz_091434
source PubMed Central Open Access; Wiley Online Library Open Access; Wiley Online Library All Journals; PubMed Central
title Genome‐wide Interaction and Stratified Study with Smoking Identifies Association of APAF1 and MIXL1/LIN9 with Alzheimer’s Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T23%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%E2%80%90wide%20Interaction%20and%20Stratified%20Study%20with%20Smoking%20Identifies%20Association%20of%20APAF1%20and%20MIXL1/LIN9%20with%20Alzheimer%E2%80%99s%20Disease&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Dacey,%20Ryan&rft.date=2024-12&rft.volume=20&rft.issue=S1&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.091434&rft_dat=%3Cwiley_cross%3EALZ091434%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true