Neuroinflammatory biomarkers in neurodegenerative disease: Insights from the ONDRI Cohort

Background Neuroinflammation (NI) has been implicated in both the pathogenesis of and neuroprotection against neurodegenerative diseases (NDs)(Psenicka et al., 2021). Plasma glial fibrillary acidic protein (GFAP), and Neurofilament light (NFL) are measures of astrogliosis and neurodegeneration, resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2023-12, Vol.19 (S10), p.n/a
Hauptverfasser: Sumra, Vishaal, Dilliott, Allison Ann, Frank, Andrew R, Lang, Anthony E, Roberts, Angela C, Troyer, Angela, Levine, Brian, Arnott, Stephen R., Tan, Brian, Fischer, Corinne E., Marras, Connie, Kwan, Donna, Munoz, Douglas, Tang‐Wai, David F., Finger, Elizabeth, Rogaeva, Ekaterina, Orange, Joseph B, Ramirez, Joel, Sunderland, Kelly M, Zinman, Lorne, Binns, Malcolm, Borrie, Michael, Masellis, Mario, Freedman, Morris, Montero‐Odasso, Manuel, Ozzoude, Miracle, Bartha, Robert, Swartz, Richard H., Tartaglia, Carmela
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S10
container_start_page
container_title Alzheimer's & dementia
container_volume 19
creator Sumra, Vishaal
Dilliott, Allison Ann
Frank, Andrew R
Lang, Anthony E
Roberts, Angela C
Troyer, Angela
Levine, Brian
Arnott, Stephen R.
Tan, Brian
Fischer, Corinne E.
Marras, Connie
Kwan, Donna
Munoz, Douglas
Tang‐Wai, David F.
Finger, Elizabeth
Rogaeva, Ekaterina
Orange, Joseph B
Ramirez, Joel
Sunderland, Kelly M
Zinman, Lorne
Binns, Malcolm
Borrie, Michael
Masellis, Mario
Freedman, Morris
Montero‐Odasso, Manuel
Ozzoude, Miracle
Bartha, Robert
Swartz, Richard H.
Tartaglia, Carmela
description Background Neuroinflammation (NI) has been implicated in both the pathogenesis of and neuroprotection against neurodegenerative diseases (NDs)(Psenicka et al., 2021). Plasma glial fibrillary acidic protein (GFAP), and Neurofilament light (NFL) are measures of astrogliosis and neurodegeneration, respectively. Amyloid beta (Aß)42/40 ratio (Aß42 concentration to total Aß concentration) below 0.068 is associated with AD pathology (Baldeiras et al., 2018). Neuroimaging‐based inflammatory biomarkers have been proposed, including free‐water diffusion (FWD)(Pasternak et al., 2009). Here we investigated FWD as a candidate biomarker for NI in AD compared to non‐AD dementia using Aß42/40 ratio in a subset of data from the Ontario Neurodegenerative Disease Research Initiative (ONDRI). Method FWD maps were generated in 370 subjects (126 non‐AD and 244 AD). MRI processing included ICVmapp3r for brain extraction and bias field correction, Synb0, Topup and Eddy for dMRI preprocessing and MATLAB for freewater mapping. Plasma Aß42, Aß40, GFAP and NFL were measured using the Simoa Human Neurology 4‐Plex E assay, and cognition was estimated using the Montreal Cognitive Assessment (MoCA). Linear regression was used to estimate the ability for FWD in the left (LcGM) and right (RcGM) cortical grey matter to predict GFAP, NFL and MoCA score in AD and nonAD based on Aß42/40 threshold of 0.068. Result FWD correlated with GFAP (LcGM; R = 0.4, p = 0.0013 and RcGM; R = 0.37, p = 0.0069), and MoCA total score (LcGM; R = ‐0.29, p = 0.001 and RcGM; R = ‐0.27, p = 0.001), but not with NFL across the whole group. This relationship was largely driven by the AD group wherein FWD predicted GFAP (LcGM: R = 0.12, p = 0.02, RcGM approaching significance R = 0.1, p = 0.06), and MoCA Total score (LcGM: R = ‐0.33, p
doi_str_mv 10.1002/alz.081848
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_alz_081848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ081848</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1138-cca96dc6cf427a60a8346ff236287e66a567dce8c18bee52e0307bb3716e1c8a3</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK5efIKcha5J2qZZb0t1tVB2QfSgl5Kmk220bSSpSn16u3Tx6GkG5psf_g-hS0oWlBB2LZufBRFUROIIzWgcsyBmyfL4b-fkFJ15_0ZINGLxDL1s4NNZ0-lGtq3srRtwaWwr3Ts4j02Hu_29gh104GRvvgBXxoP0cIOzzptd3XusnW1xXwPebm4fM5za2rr-HJ1o2Xi4OMw5el7fPaUPQb69z9JVHihKQxEoJZe8UlzpiCWSEynCiGvNQs5EApzLmCeVAqGoKAFiBiQkSVmGCeVAlZDhHF1NucpZ7x3o4sOZscBQUFLspRSjlGKSMsJ0gr9NA8M_ZLHKXw8_v0a4ZbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Neuroinflammatory biomarkers in neurodegenerative disease: Insights from the ONDRI Cohort</title><source>Access via Wiley Online Library</source><creator>Sumra, Vishaal ; Dilliott, Allison Ann ; Frank, Andrew R ; Lang, Anthony E ; Roberts, Angela C ; Troyer, Angela ; Levine, Brian ; Arnott, Stephen R. ; Tan, Brian ; Fischer, Corinne E. ; Marras, Connie ; Kwan, Donna ; Munoz, Douglas ; Tang‐Wai, David F. ; Finger, Elizabeth ; Rogaeva, Ekaterina ; Orange, Joseph B ; Ramirez, Joel ; Sunderland, Kelly M ; Zinman, Lorne ; Binns, Malcolm ; Borrie, Michael ; Masellis, Mario ; Freedman, Morris ; Montero‐Odasso, Manuel ; Ozzoude, Miracle ; Bartha, Robert ; Swartz, Richard H. ; Tartaglia, Carmela</creator><creatorcontrib>Sumra, Vishaal ; Dilliott, Allison Ann ; Frank, Andrew R ; Lang, Anthony E ; Roberts, Angela C ; Troyer, Angela ; Levine, Brian ; Arnott, Stephen R. ; Tan, Brian ; Fischer, Corinne E. ; Marras, Connie ; Kwan, Donna ; Munoz, Douglas ; Tang‐Wai, David F. ; Finger, Elizabeth ; Rogaeva, Ekaterina ; Orange, Joseph B ; Ramirez, Joel ; Sunderland, Kelly M ; Zinman, Lorne ; Binns, Malcolm ; Borrie, Michael ; Masellis, Mario ; Freedman, Morris ; Montero‐Odasso, Manuel ; Ozzoude, Miracle ; Bartha, Robert ; Swartz, Richard H. ; Tartaglia, Carmela</creatorcontrib><description>Background Neuroinflammation (NI) has been implicated in both the pathogenesis of and neuroprotection against neurodegenerative diseases (NDs)(Psenicka et al., 2021). Plasma glial fibrillary acidic protein (GFAP), and Neurofilament light (NFL) are measures of astrogliosis and neurodegeneration, respectively. Amyloid beta (Aß)42/40 ratio (Aß42 concentration to total Aß concentration) below 0.068 is associated with AD pathology (Baldeiras et al., 2018). Neuroimaging‐based inflammatory biomarkers have been proposed, including free‐water diffusion (FWD)(Pasternak et al., 2009). Here we investigated FWD as a candidate biomarker for NI in AD compared to non‐AD dementia using Aß42/40 ratio in a subset of data from the Ontario Neurodegenerative Disease Research Initiative (ONDRI). Method FWD maps were generated in 370 subjects (126 non‐AD and 244 AD). MRI processing included ICVmapp3r for brain extraction and bias field correction, Synb0, Topup and Eddy for dMRI preprocessing and MATLAB for freewater mapping. Plasma Aß42, Aß40, GFAP and NFL were measured using the Simoa Human Neurology 4‐Plex E assay, and cognition was estimated using the Montreal Cognitive Assessment (MoCA). Linear regression was used to estimate the ability for FWD in the left (LcGM) and right (RcGM) cortical grey matter to predict GFAP, NFL and MoCA score in AD and nonAD based on Aß42/40 threshold of 0.068. Result FWD correlated with GFAP (LcGM; R = 0.4, p = 0.0013 and RcGM; R = 0.37, p = 0.0069), and MoCA total score (LcGM; R = ‐0.29, p = 0.001 and RcGM; R = ‐0.27, p = 0.001), but not with NFL across the whole group. This relationship was largely driven by the AD group wherein FWD predicted GFAP (LcGM: R = 0.12, p = 0.02, RcGM approaching significance R = 0.1, p = 0.06), and MoCA Total score (LcGM: R = ‐0.33, p&lt;0.0001), RcGM: R = ‐0.25, p&lt;0.0001). The nonAD group did not show this relationship. FWD did not predict NFL in the AD and nonAD group. Conclusion In patients with Aß42/40&lt;0.068, suggestive of AD, FWD in cGM was more strongly related to GFAP than NFL, and predicted cognition, a pattern that was not observed in nonAD patients. Our results suggest distinct patterns of NI in AD compared with nonAD that can be detected with FWD and with a multi‐modal approach could further understanding of differences in pathophysiology across NDs.</description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.081848</identifier><language>eng</language><ispartof>Alzheimer's &amp; dementia, 2023-12, Vol.19 (S10), p.n/a</ispartof><rights>2023 the Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Falz.081848$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Falz.081848$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Sumra, Vishaal</creatorcontrib><creatorcontrib>Dilliott, Allison Ann</creatorcontrib><creatorcontrib>Frank, Andrew R</creatorcontrib><creatorcontrib>Lang, Anthony E</creatorcontrib><creatorcontrib>Roberts, Angela C</creatorcontrib><creatorcontrib>Troyer, Angela</creatorcontrib><creatorcontrib>Levine, Brian</creatorcontrib><creatorcontrib>Arnott, Stephen R.</creatorcontrib><creatorcontrib>Tan, Brian</creatorcontrib><creatorcontrib>Fischer, Corinne E.</creatorcontrib><creatorcontrib>Marras, Connie</creatorcontrib><creatorcontrib>Kwan, Donna</creatorcontrib><creatorcontrib>Munoz, Douglas</creatorcontrib><creatorcontrib>Tang‐Wai, David F.</creatorcontrib><creatorcontrib>Finger, Elizabeth</creatorcontrib><creatorcontrib>Rogaeva, Ekaterina</creatorcontrib><creatorcontrib>Orange, Joseph B</creatorcontrib><creatorcontrib>Ramirez, Joel</creatorcontrib><creatorcontrib>Sunderland, Kelly M</creatorcontrib><creatorcontrib>Zinman, Lorne</creatorcontrib><creatorcontrib>Binns, Malcolm</creatorcontrib><creatorcontrib>Borrie, Michael</creatorcontrib><creatorcontrib>Masellis, Mario</creatorcontrib><creatorcontrib>Freedman, Morris</creatorcontrib><creatorcontrib>Montero‐Odasso, Manuel</creatorcontrib><creatorcontrib>Ozzoude, Miracle</creatorcontrib><creatorcontrib>Bartha, Robert</creatorcontrib><creatorcontrib>Swartz, Richard H.</creatorcontrib><creatorcontrib>Tartaglia, Carmela</creatorcontrib><title>Neuroinflammatory biomarkers in neurodegenerative disease: Insights from the ONDRI Cohort</title><title>Alzheimer's &amp; dementia</title><description>Background Neuroinflammation (NI) has been implicated in both the pathogenesis of and neuroprotection against neurodegenerative diseases (NDs)(Psenicka et al., 2021). Plasma glial fibrillary acidic protein (GFAP), and Neurofilament light (NFL) are measures of astrogliosis and neurodegeneration, respectively. Amyloid beta (Aß)42/40 ratio (Aß42 concentration to total Aß concentration) below 0.068 is associated with AD pathology (Baldeiras et al., 2018). Neuroimaging‐based inflammatory biomarkers have been proposed, including free‐water diffusion (FWD)(Pasternak et al., 2009). Here we investigated FWD as a candidate biomarker for NI in AD compared to non‐AD dementia using Aß42/40 ratio in a subset of data from the Ontario Neurodegenerative Disease Research Initiative (ONDRI). Method FWD maps were generated in 370 subjects (126 non‐AD and 244 AD). MRI processing included ICVmapp3r for brain extraction and bias field correction, Synb0, Topup and Eddy for dMRI preprocessing and MATLAB for freewater mapping. Plasma Aß42, Aß40, GFAP and NFL were measured using the Simoa Human Neurology 4‐Plex E assay, and cognition was estimated using the Montreal Cognitive Assessment (MoCA). Linear regression was used to estimate the ability for FWD in the left (LcGM) and right (RcGM) cortical grey matter to predict GFAP, NFL and MoCA score in AD and nonAD based on Aß42/40 threshold of 0.068. Result FWD correlated with GFAP (LcGM; R = 0.4, p = 0.0013 and RcGM; R = 0.37, p = 0.0069), and MoCA total score (LcGM; R = ‐0.29, p = 0.001 and RcGM; R = ‐0.27, p = 0.001), but not with NFL across the whole group. This relationship was largely driven by the AD group wherein FWD predicted GFAP (LcGM: R = 0.12, p = 0.02, RcGM approaching significance R = 0.1, p = 0.06), and MoCA Total score (LcGM: R = ‐0.33, p&lt;0.0001), RcGM: R = ‐0.25, p&lt;0.0001). The nonAD group did not show this relationship. FWD did not predict NFL in the AD and nonAD group. Conclusion In patients with Aß42/40&lt;0.068, suggestive of AD, FWD in cGM was more strongly related to GFAP than NFL, and predicted cognition, a pattern that was not observed in nonAD patients. Our results suggest distinct patterns of NI in AD compared with nonAD that can be detected with FWD and with a multi‐modal approach could further understanding of differences in pathophysiology across NDs.</description><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK5efIKcha5J2qZZb0t1tVB2QfSgl5Kmk220bSSpSn16u3Tx6GkG5psf_g-hS0oWlBB2LZufBRFUROIIzWgcsyBmyfL4b-fkFJ15_0ZINGLxDL1s4NNZ0-lGtq3srRtwaWwr3Ts4j02Hu_29gh104GRvvgBXxoP0cIOzzptd3XusnW1xXwPebm4fM5za2rr-HJ1o2Xi4OMw5el7fPaUPQb69z9JVHihKQxEoJZe8UlzpiCWSEynCiGvNQs5EApzLmCeVAqGoKAFiBiQkSVmGCeVAlZDhHF1NucpZ7x3o4sOZscBQUFLspRSjlGKSMsJ0gr9NA8M_ZLHKXw8_v0a4ZbU</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Sumra, Vishaal</creator><creator>Dilliott, Allison Ann</creator><creator>Frank, Andrew R</creator><creator>Lang, Anthony E</creator><creator>Roberts, Angela C</creator><creator>Troyer, Angela</creator><creator>Levine, Brian</creator><creator>Arnott, Stephen R.</creator><creator>Tan, Brian</creator><creator>Fischer, Corinne E.</creator><creator>Marras, Connie</creator><creator>Kwan, Donna</creator><creator>Munoz, Douglas</creator><creator>Tang‐Wai, David F.</creator><creator>Finger, Elizabeth</creator><creator>Rogaeva, Ekaterina</creator><creator>Orange, Joseph B</creator><creator>Ramirez, Joel</creator><creator>Sunderland, Kelly M</creator><creator>Zinman, Lorne</creator><creator>Binns, Malcolm</creator><creator>Borrie, Michael</creator><creator>Masellis, Mario</creator><creator>Freedman, Morris</creator><creator>Montero‐Odasso, Manuel</creator><creator>Ozzoude, Miracle</creator><creator>Bartha, Robert</creator><creator>Swartz, Richard H.</creator><creator>Tartaglia, Carmela</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202312</creationdate><title>Neuroinflammatory biomarkers in neurodegenerative disease: Insights from the ONDRI Cohort</title><author>Sumra, Vishaal ; Dilliott, Allison Ann ; Frank, Andrew R ; Lang, Anthony E ; Roberts, Angela C ; Troyer, Angela ; Levine, Brian ; Arnott, Stephen R. ; Tan, Brian ; Fischer, Corinne E. ; Marras, Connie ; Kwan, Donna ; Munoz, Douglas ; Tang‐Wai, David F. ; Finger, Elizabeth ; Rogaeva, Ekaterina ; Orange, Joseph B ; Ramirez, Joel ; Sunderland, Kelly M ; Zinman, Lorne ; Binns, Malcolm ; Borrie, Michael ; Masellis, Mario ; Freedman, Morris ; Montero‐Odasso, Manuel ; Ozzoude, Miracle ; Bartha, Robert ; Swartz, Richard H. ; Tartaglia, Carmela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1138-cca96dc6cf427a60a8346ff236287e66a567dce8c18bee52e0307bb3716e1c8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sumra, Vishaal</creatorcontrib><creatorcontrib>Dilliott, Allison Ann</creatorcontrib><creatorcontrib>Frank, Andrew R</creatorcontrib><creatorcontrib>Lang, Anthony E</creatorcontrib><creatorcontrib>Roberts, Angela C</creatorcontrib><creatorcontrib>Troyer, Angela</creatorcontrib><creatorcontrib>Levine, Brian</creatorcontrib><creatorcontrib>Arnott, Stephen R.</creatorcontrib><creatorcontrib>Tan, Brian</creatorcontrib><creatorcontrib>Fischer, Corinne E.</creatorcontrib><creatorcontrib>Marras, Connie</creatorcontrib><creatorcontrib>Kwan, Donna</creatorcontrib><creatorcontrib>Munoz, Douglas</creatorcontrib><creatorcontrib>Tang‐Wai, David F.</creatorcontrib><creatorcontrib>Finger, Elizabeth</creatorcontrib><creatorcontrib>Rogaeva, Ekaterina</creatorcontrib><creatorcontrib>Orange, Joseph B</creatorcontrib><creatorcontrib>Ramirez, Joel</creatorcontrib><creatorcontrib>Sunderland, Kelly M</creatorcontrib><creatorcontrib>Zinman, Lorne</creatorcontrib><creatorcontrib>Binns, Malcolm</creatorcontrib><creatorcontrib>Borrie, Michael</creatorcontrib><creatorcontrib>Masellis, Mario</creatorcontrib><creatorcontrib>Freedman, Morris</creatorcontrib><creatorcontrib>Montero‐Odasso, Manuel</creatorcontrib><creatorcontrib>Ozzoude, Miracle</creatorcontrib><creatorcontrib>Bartha, Robert</creatorcontrib><creatorcontrib>Swartz, Richard H.</creatorcontrib><creatorcontrib>Tartaglia, Carmela</creatorcontrib><collection>CrossRef</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sumra, Vishaal</au><au>Dilliott, Allison Ann</au><au>Frank, Andrew R</au><au>Lang, Anthony E</au><au>Roberts, Angela C</au><au>Troyer, Angela</au><au>Levine, Brian</au><au>Arnott, Stephen R.</au><au>Tan, Brian</au><au>Fischer, Corinne E.</au><au>Marras, Connie</au><au>Kwan, Donna</au><au>Munoz, Douglas</au><au>Tang‐Wai, David F.</au><au>Finger, Elizabeth</au><au>Rogaeva, Ekaterina</au><au>Orange, Joseph B</au><au>Ramirez, Joel</au><au>Sunderland, Kelly M</au><au>Zinman, Lorne</au><au>Binns, Malcolm</au><au>Borrie, Michael</au><au>Masellis, Mario</au><au>Freedman, Morris</au><au>Montero‐Odasso, Manuel</au><au>Ozzoude, Miracle</au><au>Bartha, Robert</au><au>Swartz, Richard H.</au><au>Tartaglia, Carmela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neuroinflammatory biomarkers in neurodegenerative disease: Insights from the ONDRI Cohort</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><date>2023-12</date><risdate>2023</risdate><volume>19</volume><issue>S10</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract>Background Neuroinflammation (NI) has been implicated in both the pathogenesis of and neuroprotection against neurodegenerative diseases (NDs)(Psenicka et al., 2021). Plasma glial fibrillary acidic protein (GFAP), and Neurofilament light (NFL) are measures of astrogliosis and neurodegeneration, respectively. Amyloid beta (Aß)42/40 ratio (Aß42 concentration to total Aß concentration) below 0.068 is associated with AD pathology (Baldeiras et al., 2018). Neuroimaging‐based inflammatory biomarkers have been proposed, including free‐water diffusion (FWD)(Pasternak et al., 2009). Here we investigated FWD as a candidate biomarker for NI in AD compared to non‐AD dementia using Aß42/40 ratio in a subset of data from the Ontario Neurodegenerative Disease Research Initiative (ONDRI). Method FWD maps were generated in 370 subjects (126 non‐AD and 244 AD). MRI processing included ICVmapp3r for brain extraction and bias field correction, Synb0, Topup and Eddy for dMRI preprocessing and MATLAB for freewater mapping. Plasma Aß42, Aß40, GFAP and NFL were measured using the Simoa Human Neurology 4‐Plex E assay, and cognition was estimated using the Montreal Cognitive Assessment (MoCA). Linear regression was used to estimate the ability for FWD in the left (LcGM) and right (RcGM) cortical grey matter to predict GFAP, NFL and MoCA score in AD and nonAD based on Aß42/40 threshold of 0.068. Result FWD correlated with GFAP (LcGM; R = 0.4, p = 0.0013 and RcGM; R = 0.37, p = 0.0069), and MoCA total score (LcGM; R = ‐0.29, p = 0.001 and RcGM; R = ‐0.27, p = 0.001), but not with NFL across the whole group. This relationship was largely driven by the AD group wherein FWD predicted GFAP (LcGM: R = 0.12, p = 0.02, RcGM approaching significance R = 0.1, p = 0.06), and MoCA Total score (LcGM: R = ‐0.33, p&lt;0.0001), RcGM: R = ‐0.25, p&lt;0.0001). The nonAD group did not show this relationship. FWD did not predict NFL in the AD and nonAD group. Conclusion In patients with Aß42/40&lt;0.068, suggestive of AD, FWD in cGM was more strongly related to GFAP than NFL, and predicted cognition, a pattern that was not observed in nonAD patients. Our results suggest distinct patterns of NI in AD compared with nonAD that can be detected with FWD and with a multi‐modal approach could further understanding of differences in pathophysiology across NDs.</abstract><doi>10.1002/alz.081848</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2023-12, Vol.19 (S10), p.n/a
issn 1552-5260
1552-5279
language eng
recordid cdi_crossref_primary_10_1002_alz_081848
source Access via Wiley Online Library
title Neuroinflammatory biomarkers in neurodegenerative disease: Insights from the ONDRI Cohort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neuroinflammatory%20biomarkers%20in%20neurodegenerative%20disease:%20Insights%20from%20the%20ONDRI%20Cohort&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Sumra,%20Vishaal&rft.date=2023-12&rft.volume=19&rft.issue=S10&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.081848&rft_dat=%3Cwiley_cross%3EALZ081848%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true