Vascular contribution to the preclinical Alzheimer’s disease pathological changes: Insights from the EPAD cohort

Background The role of cardiovascular risk factors and cerebral small vessel disease (CSVD) on the sequences of Alzheimer’s Disease (AD) pathological events remains to be determined. Method We included 1592 non‐demented participants from EPAD‐LCS (Table‐1). Linear models were used to study associati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2023-12, Vol.19 (S10), p.n/a
Hauptverfasser: Lorenzini, Luigi, Maranzano, Alessio, Tranfa, Mario, Collij, Lyduine E., Sudre, Carole H, Wolz, Robin, Haller, Sven, Blennow, Kaj, Frisoni, Giovanni B, Payoux, Pierre, Martinez‐Lage, Pablo, Ewers, Michael, Chetelat, Gael, Waldman, Adam, Wardlaw, Joanna M, Fox, Nick C, Ritchie, Craig W, Scheltens, Philip, Visser, Pieter Jelle, Wink, Alle Meije, Mutsaerts, Henk‐Jan, Gispert, Juan Domingo, Ingala, Silvia, Barkhof, Frederik
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S10
container_start_page
container_title Alzheimer's & dementia
container_volume 19
creator Lorenzini, Luigi
Maranzano, Alessio
Tranfa, Mario
Collij, Lyduine E.
Sudre, Carole H
Wolz, Robin
Haller, Sven
Blennow, Kaj
Frisoni, Giovanni B
Payoux, Pierre
Martinez‐Lage, Pablo
Ewers, Michael
Chetelat, Gael
Waldman, Adam
Wardlaw, Joanna M
Fox, Nick C
Ritchie, Craig W
Scheltens, Philip
Visser, Pieter Jelle
Wink, Alle Meije
Mutsaerts, Henk‐Jan
Gispert, Juan Domingo
Ingala, Silvia
Barkhof, Frederik
description Background The role of cardiovascular risk factors and cerebral small vessel disease (CSVD) on the sequences of Alzheimer’s Disease (AD) pathological events remains to be determined. Method We included 1592 non‐demented participants from EPAD‐LCS (Table‐1). Linear models were used to study associations between the Framingham score (FRS) and CSF‐Aß1‐42; CSVD indices (visual assessment for perivascular spaces [PVS] in the basal ganglia [BG] and centrum‐semiovale [CS], periventricular and deep white matter hyperintensities [WMHs], presence of lobar or deep cerebral microbleeds [CMBs], and lacunes, and quantification of global and lobar WMH volumes) and Aß1‐42 and p‐Tau181, including an interaction between CSVD indices and Aß1‐42 for the latter. Hippocampal volumes (HCV) were quantified using LEAP. Structural equation models (SEM) were used to assess the association between clinical variables as described in Figure‐1. Models were corrected for age, sex, site and multiple comparisons. Result Higher FRS scores were associated with lower CSF Aß1‐42 (ß = ‐0.18; p
doi_str_mv 10.1002/alz.081655
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_alz_081655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ081655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1135-62f50c8dd7c76b9995abff2da243ea7640578487913c4f84a23ab5997c1966163</originalsourceid><addsrcrecordid>eNp90LFOwzAQBmALgUQpLDyBZ6QU24ntmC0qBSpVggEYWCLHsRsjN67sVKideA1ejychNBUj093w3X_SD8AlRhOMELmWbjdBOWaUHoERppQklHBx_LczdArOYnxHKOsZHYHwKqPaOBmg8m0XbLXprG9h52HXaLgOWjnbWiUdLNyu0Xalw_fnV4S1jVrGXsiu8c4v90Q1sl3qeAPnbbTLpovQBL_aJ82eitv-ReNDdw5OjHRRXxzmGLzczZ6nD8ni8X4-LRaJwjilCSOGIpXXNVecVUIIKitjSC1JlmrJWYYoz7OcC5yqzOSZJKmsqBBcYcEYZukYXA25KvgYgzblOtiVDNsSo_K3rbJvqxza6jEe8Id1evuPLIvF2-HmB6XpbqM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Vascular contribution to the preclinical Alzheimer’s disease pathological changes: Insights from the EPAD cohort</title><source>Wiley Online Library Journals</source><creator>Lorenzini, Luigi ; Maranzano, Alessio ; Tranfa, Mario ; Collij, Lyduine E. ; Sudre, Carole H ; Wolz, Robin ; Haller, Sven ; Blennow, Kaj ; Frisoni, Giovanni B ; Payoux, Pierre ; Martinez‐Lage, Pablo ; Ewers, Michael ; Chetelat, Gael ; Waldman, Adam ; Wardlaw, Joanna M ; Fox, Nick C ; Ritchie, Craig W ; Scheltens, Philip ; Visser, Pieter Jelle ; Wink, Alle Meije ; Mutsaerts, Henk‐Jan ; Gispert, Juan Domingo ; Ingala, Silvia ; Barkhof, Frederik</creator><creatorcontrib>Lorenzini, Luigi ; Maranzano, Alessio ; Tranfa, Mario ; Collij, Lyduine E. ; Sudre, Carole H ; Wolz, Robin ; Haller, Sven ; Blennow, Kaj ; Frisoni, Giovanni B ; Payoux, Pierre ; Martinez‐Lage, Pablo ; Ewers, Michael ; Chetelat, Gael ; Waldman, Adam ; Wardlaw, Joanna M ; Fox, Nick C ; Ritchie, Craig W ; Scheltens, Philip ; Visser, Pieter Jelle ; Wink, Alle Meije ; Mutsaerts, Henk‐Jan ; Gispert, Juan Domingo ; Ingala, Silvia ; Barkhof, Frederik</creatorcontrib><description><![CDATA[Background The role of cardiovascular risk factors and cerebral small vessel disease (CSVD) on the sequences of Alzheimer’s Disease (AD) pathological events remains to be determined. Method We included 1592 non‐demented participants from EPAD‐LCS (Table‐1). Linear models were used to study associations between the Framingham score (FRS) and CSF‐Aß1‐42; CSVD indices (visual assessment for perivascular spaces [PVS] in the basal ganglia [BG] and centrum‐semiovale [CS], periventricular and deep white matter hyperintensities [WMHs], presence of lobar or deep cerebral microbleeds [CMBs], and lacunes, and quantification of global and lobar WMH volumes) and Aß1‐42 and p‐Tau181, including an interaction between CSVD indices and Aß1‐42 for the latter. Hippocampal volumes (HCV) were quantified using LEAP. Structural equation models (SEM) were used to assess the association between clinical variables as described in Figure‐1. Models were corrected for age, sex, site and multiple comparisons. Result Higher FRS scores were associated with lower CSF Aß1‐42 (ß = ‐0.18; p<0.001) and higher P‐tau181 (ß = 0.21; p<0.001). Aß1‐42 was negatively associated with all CSVD markers (all p<0.001; Figure‐2). We found stronger association between Aß1‐42 and P‐tau181 in participants with higher Fazekas deep and periventricular (p‐interaction<0.005) scores, and higher regional WMH (all p‐interactions<0.005) volumes. Using SEM, the CSVD‐burden latent factor fully mediated the association between FRS and Aß1‐42 (indirect effect: ß = ‐0.03; p<0.001). Aß1‐42 did not significantly predict the CSVD‐burden latent factor. We observed a significant direct effect of Aß1‐42 on P‐tau181 levels (ß = ‐0.14; p<0.001) and HCV (ß = 0.06; p<0.05), and of P‐tau181 levels onto HCV (ß = ‐0.05; p<0.05). A significant indirect, but not direct, effect of the latent factor on both P‐tau181 (indirect effect: ß = 0.36; p < 0.05) and HCV (indirect effect: ß = ‐0.24; p < 0.05) through Aß1‐42 was observed. Conclusion Expression of cerebrovascular pathology fully mediates the effects of vascular risk factors on amyloid and accelerates manifestation of downstream biomarkers in the preclinical phases of AD, stressing the importance of vascular‐protective treatments.]]></description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.081655</identifier><language>eng</language><ispartof>Alzheimer's &amp; dementia, 2023-12, Vol.19 (S10), p.n/a</ispartof><rights>2023 the Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Falz.081655$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Falz.081655$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Lorenzini, Luigi</creatorcontrib><creatorcontrib>Maranzano, Alessio</creatorcontrib><creatorcontrib>Tranfa, Mario</creatorcontrib><creatorcontrib>Collij, Lyduine E.</creatorcontrib><creatorcontrib>Sudre, Carole H</creatorcontrib><creatorcontrib>Wolz, Robin</creatorcontrib><creatorcontrib>Haller, Sven</creatorcontrib><creatorcontrib>Blennow, Kaj</creatorcontrib><creatorcontrib>Frisoni, Giovanni B</creatorcontrib><creatorcontrib>Payoux, Pierre</creatorcontrib><creatorcontrib>Martinez‐Lage, Pablo</creatorcontrib><creatorcontrib>Ewers, Michael</creatorcontrib><creatorcontrib>Chetelat, Gael</creatorcontrib><creatorcontrib>Waldman, Adam</creatorcontrib><creatorcontrib>Wardlaw, Joanna M</creatorcontrib><creatorcontrib>Fox, Nick C</creatorcontrib><creatorcontrib>Ritchie, Craig W</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Visser, Pieter Jelle</creatorcontrib><creatorcontrib>Wink, Alle Meije</creatorcontrib><creatorcontrib>Mutsaerts, Henk‐Jan</creatorcontrib><creatorcontrib>Gispert, Juan Domingo</creatorcontrib><creatorcontrib>Ingala, Silvia</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><title>Vascular contribution to the preclinical Alzheimer’s disease pathological changes: Insights from the EPAD cohort</title><title>Alzheimer's &amp; dementia</title><description><![CDATA[Background The role of cardiovascular risk factors and cerebral small vessel disease (CSVD) on the sequences of Alzheimer’s Disease (AD) pathological events remains to be determined. Method We included 1592 non‐demented participants from EPAD‐LCS (Table‐1). Linear models were used to study associations between the Framingham score (FRS) and CSF‐Aß1‐42; CSVD indices (visual assessment for perivascular spaces [PVS] in the basal ganglia [BG] and centrum‐semiovale [CS], periventricular and deep white matter hyperintensities [WMHs], presence of lobar or deep cerebral microbleeds [CMBs], and lacunes, and quantification of global and lobar WMH volumes) and Aß1‐42 and p‐Tau181, including an interaction between CSVD indices and Aß1‐42 for the latter. Hippocampal volumes (HCV) were quantified using LEAP. Structural equation models (SEM) were used to assess the association between clinical variables as described in Figure‐1. Models were corrected for age, sex, site and multiple comparisons. Result Higher FRS scores were associated with lower CSF Aß1‐42 (ß = ‐0.18; p<0.001) and higher P‐tau181 (ß = 0.21; p<0.001). Aß1‐42 was negatively associated with all CSVD markers (all p<0.001; Figure‐2). We found stronger association between Aß1‐42 and P‐tau181 in participants with higher Fazekas deep and periventricular (p‐interaction<0.005) scores, and higher regional WMH (all p‐interactions<0.005) volumes. Using SEM, the CSVD‐burden latent factor fully mediated the association between FRS and Aß1‐42 (indirect effect: ß = ‐0.03; p<0.001). Aß1‐42 did not significantly predict the CSVD‐burden latent factor. We observed a significant direct effect of Aß1‐42 on P‐tau181 levels (ß = ‐0.14; p<0.001) and HCV (ß = 0.06; p<0.05), and of P‐tau181 levels onto HCV (ß = ‐0.05; p<0.05). A significant indirect, but not direct, effect of the latent factor on both P‐tau181 (indirect effect: ß = 0.36; p < 0.05) and HCV (indirect effect: ß = ‐0.24; p < 0.05) through Aß1‐42 was observed. Conclusion Expression of cerebrovascular pathology fully mediates the effects of vascular risk factors on amyloid and accelerates manifestation of downstream biomarkers in the preclinical phases of AD, stressing the importance of vascular‐protective treatments.]]></description><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90LFOwzAQBmALgUQpLDyBZ6QU24ntmC0qBSpVggEYWCLHsRsjN67sVKideA1ejychNBUj093w3X_SD8AlRhOMELmWbjdBOWaUHoERppQklHBx_LczdArOYnxHKOsZHYHwKqPaOBmg8m0XbLXprG9h52HXaLgOWjnbWiUdLNyu0Xalw_fnV4S1jVrGXsiu8c4v90Q1sl3qeAPnbbTLpovQBL_aJ82eitv-ReNDdw5OjHRRXxzmGLzczZ6nD8ni8X4-LRaJwjilCSOGIpXXNVecVUIIKitjSC1JlmrJWYYoz7OcC5yqzOSZJKmsqBBcYcEYZukYXA25KvgYgzblOtiVDNsSo_K3rbJvqxza6jEe8Id1evuPLIvF2-HmB6XpbqM</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Lorenzini, Luigi</creator><creator>Maranzano, Alessio</creator><creator>Tranfa, Mario</creator><creator>Collij, Lyduine E.</creator><creator>Sudre, Carole H</creator><creator>Wolz, Robin</creator><creator>Haller, Sven</creator><creator>Blennow, Kaj</creator><creator>Frisoni, Giovanni B</creator><creator>Payoux, Pierre</creator><creator>Martinez‐Lage, Pablo</creator><creator>Ewers, Michael</creator><creator>Chetelat, Gael</creator><creator>Waldman, Adam</creator><creator>Wardlaw, Joanna M</creator><creator>Fox, Nick C</creator><creator>Ritchie, Craig W</creator><creator>Scheltens, Philip</creator><creator>Visser, Pieter Jelle</creator><creator>Wink, Alle Meije</creator><creator>Mutsaerts, Henk‐Jan</creator><creator>Gispert, Juan Domingo</creator><creator>Ingala, Silvia</creator><creator>Barkhof, Frederik</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202312</creationdate><title>Vascular contribution to the preclinical Alzheimer’s disease pathological changes: Insights from the EPAD cohort</title><author>Lorenzini, Luigi ; Maranzano, Alessio ; Tranfa, Mario ; Collij, Lyduine E. ; Sudre, Carole H ; Wolz, Robin ; Haller, Sven ; Blennow, Kaj ; Frisoni, Giovanni B ; Payoux, Pierre ; Martinez‐Lage, Pablo ; Ewers, Michael ; Chetelat, Gael ; Waldman, Adam ; Wardlaw, Joanna M ; Fox, Nick C ; Ritchie, Craig W ; Scheltens, Philip ; Visser, Pieter Jelle ; Wink, Alle Meije ; Mutsaerts, Henk‐Jan ; Gispert, Juan Domingo ; Ingala, Silvia ; Barkhof, Frederik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1135-62f50c8dd7c76b9995abff2da243ea7640578487913c4f84a23ab5997c1966163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lorenzini, Luigi</creatorcontrib><creatorcontrib>Maranzano, Alessio</creatorcontrib><creatorcontrib>Tranfa, Mario</creatorcontrib><creatorcontrib>Collij, Lyduine E.</creatorcontrib><creatorcontrib>Sudre, Carole H</creatorcontrib><creatorcontrib>Wolz, Robin</creatorcontrib><creatorcontrib>Haller, Sven</creatorcontrib><creatorcontrib>Blennow, Kaj</creatorcontrib><creatorcontrib>Frisoni, Giovanni B</creatorcontrib><creatorcontrib>Payoux, Pierre</creatorcontrib><creatorcontrib>Martinez‐Lage, Pablo</creatorcontrib><creatorcontrib>Ewers, Michael</creatorcontrib><creatorcontrib>Chetelat, Gael</creatorcontrib><creatorcontrib>Waldman, Adam</creatorcontrib><creatorcontrib>Wardlaw, Joanna M</creatorcontrib><creatorcontrib>Fox, Nick C</creatorcontrib><creatorcontrib>Ritchie, Craig W</creatorcontrib><creatorcontrib>Scheltens, Philip</creatorcontrib><creatorcontrib>Visser, Pieter Jelle</creatorcontrib><creatorcontrib>Wink, Alle Meije</creatorcontrib><creatorcontrib>Mutsaerts, Henk‐Jan</creatorcontrib><creatorcontrib>Gispert, Juan Domingo</creatorcontrib><creatorcontrib>Ingala, Silvia</creatorcontrib><creatorcontrib>Barkhof, Frederik</creatorcontrib><collection>CrossRef</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lorenzini, Luigi</au><au>Maranzano, Alessio</au><au>Tranfa, Mario</au><au>Collij, Lyduine E.</au><au>Sudre, Carole H</au><au>Wolz, Robin</au><au>Haller, Sven</au><au>Blennow, Kaj</au><au>Frisoni, Giovanni B</au><au>Payoux, Pierre</au><au>Martinez‐Lage, Pablo</au><au>Ewers, Michael</au><au>Chetelat, Gael</au><au>Waldman, Adam</au><au>Wardlaw, Joanna M</au><au>Fox, Nick C</au><au>Ritchie, Craig W</au><au>Scheltens, Philip</au><au>Visser, Pieter Jelle</au><au>Wink, Alle Meije</au><au>Mutsaerts, Henk‐Jan</au><au>Gispert, Juan Domingo</au><au>Ingala, Silvia</au><au>Barkhof, Frederik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vascular contribution to the preclinical Alzheimer’s disease pathological changes: Insights from the EPAD cohort</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><date>2023-12</date><risdate>2023</risdate><volume>19</volume><issue>S10</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract><![CDATA[Background The role of cardiovascular risk factors and cerebral small vessel disease (CSVD) on the sequences of Alzheimer’s Disease (AD) pathological events remains to be determined. Method We included 1592 non‐demented participants from EPAD‐LCS (Table‐1). Linear models were used to study associations between the Framingham score (FRS) and CSF‐Aß1‐42; CSVD indices (visual assessment for perivascular spaces [PVS] in the basal ganglia [BG] and centrum‐semiovale [CS], periventricular and deep white matter hyperintensities [WMHs], presence of lobar or deep cerebral microbleeds [CMBs], and lacunes, and quantification of global and lobar WMH volumes) and Aß1‐42 and p‐Tau181, including an interaction between CSVD indices and Aß1‐42 for the latter. Hippocampal volumes (HCV) were quantified using LEAP. Structural equation models (SEM) were used to assess the association between clinical variables as described in Figure‐1. Models were corrected for age, sex, site and multiple comparisons. Result Higher FRS scores were associated with lower CSF Aß1‐42 (ß = ‐0.18; p<0.001) and higher P‐tau181 (ß = 0.21; p<0.001). Aß1‐42 was negatively associated with all CSVD markers (all p<0.001; Figure‐2). We found stronger association between Aß1‐42 and P‐tau181 in participants with higher Fazekas deep and periventricular (p‐interaction<0.005) scores, and higher regional WMH (all p‐interactions<0.005) volumes. Using SEM, the CSVD‐burden latent factor fully mediated the association between FRS and Aß1‐42 (indirect effect: ß = ‐0.03; p<0.001). Aß1‐42 did not significantly predict the CSVD‐burden latent factor. We observed a significant direct effect of Aß1‐42 on P‐tau181 levels (ß = ‐0.14; p<0.001) and HCV (ß = 0.06; p<0.05), and of P‐tau181 levels onto HCV (ß = ‐0.05; p<0.05). A significant indirect, but not direct, effect of the latent factor on both P‐tau181 (indirect effect: ß = 0.36; p < 0.05) and HCV (indirect effect: ß = ‐0.24; p < 0.05) through Aß1‐42 was observed. Conclusion Expression of cerebrovascular pathology fully mediates the effects of vascular risk factors on amyloid and accelerates manifestation of downstream biomarkers in the preclinical phases of AD, stressing the importance of vascular‐protective treatments.]]></abstract><doi>10.1002/alz.081655</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2023-12, Vol.19 (S10), p.n/a
issn 1552-5260
1552-5279
language eng
recordid cdi_crossref_primary_10_1002_alz_081655
source Wiley Online Library Journals
title Vascular contribution to the preclinical Alzheimer’s disease pathological changes: Insights from the EPAD cohort
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A43%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vascular%20contribution%20to%20the%20preclinical%20Alzheimer%E2%80%99s%20disease%20pathological%20changes:%20Insights%20from%20the%20EPAD%20cohort&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Lorenzini,%20Luigi&rft.date=2023-12&rft.volume=19&rft.issue=S10&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.081655&rft_dat=%3Cwiley_cross%3EALZ081655%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true