Defining the ATN framework using longitudinal biomarker trajectories reveals an emerging amyloid accumulation group

Background The ATN framework is defined by cross‐sectional biomarkers of β‐amyloid (Aβ), tau and neurodegeneration. Given that prevention trials, e.g., AHEAD 3‐45, are focused on individuals who have lower Aβ than established thresholds, we investigated whether defining the ATN framework using longi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2022-12, Vol.18 (S6), p.n/a
Hauptverfasser: Boyle, Rory Thomas, Coughlan, Gillian T, Properzi, Michael J, Archdeacon, Claire, Chou, Hsiang‐Chin Lori, Klinger, Hannah, Jacobs, Heidi I.L., Papp, Kathryn V., Amariglio, Rebecca E., Farrell, Michelle E., Donohue, Michael C., Hohman, Timothy J., Mormino, Elizabeth C., Hanseeuw, Bernard J, Chhatwal, Jasmeer P., Rentz, Dorene M., Price, Julie C, Johnson, Keith A., Schultz, Aaron P., Sperling, Reisa A., Buckley, Rachel F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S6
container_start_page
container_title Alzheimer's & dementia
container_volume 18
creator Boyle, Rory Thomas
Coughlan, Gillian T
Properzi, Michael J
Archdeacon, Claire
Chou, Hsiang‐Chin Lori
Klinger, Hannah
Jacobs, Heidi I.L.
Papp, Kathryn V.
Amariglio, Rebecca E.
Farrell, Michelle E.
Donohue, Michael C.
Hohman, Timothy J.
Mormino, Elizabeth C.
Hanseeuw, Bernard J
Chhatwal, Jasmeer P.
Rentz, Dorene M.
Price, Julie C
Johnson, Keith A.
Schultz, Aaron P.
Sperling, Reisa A.
Buckley, Rachel F.
description Background The ATN framework is defined by cross‐sectional biomarkers of β‐amyloid (Aβ), tau and neurodegeneration. Given that prevention trials, e.g., AHEAD 3‐45, are focused on individuals who have lower Aβ than established thresholds, we investigated whether defining the ATN framework using longitudinal biomarker trajectories might better identify an at‐risk sample within this boundary. Here, we applied a data‐driven method to re‐define the ATN with longitudinal biomarker data from the Harvard Aging Brain Study (HABS) and we then replicated this longitudinal framework in ADNI. Method 157 HABS participants were clinically‐normal at baseline and underwent at least two Pittsburgh Compound‐B [PiB]‐PET, Flortaucipir‐PET, and T1‐weighted MRI scans. To define longitudinal ATN, we applied latent class mixture models (LCMM) to each biomarker (global Aβ DVR, entorhinal tau SUVr, ICV‐adjusted hippocampal volume) separately, adjusting for age, and including random intercept and slopes. Akaike information criteria (AIC) determined the best‐fitting models out of two‐group or three‐group solutions with linear or spline‐link functions. We compared longitudinal ATN profiles on demographics and an optimized estimate of cognitive change (derived from longitudinal Preclinical Alzheimer Cognitive Composite (PACC) data). Result Aβ trajectories (Fig.1a) were best categorized by one stable (A→) and two accumulating subgroups, a predominantly amyloid‐negative at baseline subgroup (A‐↑) and an entirely amyloid positive at baseline subgroup (A+↑). Tau (Fig.1b) and neurodegeneration (Fig.1c) were optimally defined by stable (T→/N→) vs accumulating/atrophying (T↑/N↑) groups, respectively. These groups were replicated in ADNI (Fig.2). The entire A‐↑ subgroup were stable on T and N (A‐↑/T→/N→) and were predominantly A‐/T‐/N‐ at baseline (86%; Table 1). By contrast, 38% of A+↑ individuals changed on T, or T&N. A‐↑/T→/N→ demographically most closely resembled the longitudinally‐stable ATN group (A→/T→/N→), but were older, more likely to carry e4+ and exhibited higher baseline Aβ (Table 2). Although demonstrating Aβ accumulation, A‐↑/T→/N→ did not exhibit greater cognitive decline versus the stable group (A→/T→/N→; Fig. 3). Conclusion Our findings suggest that a longitudinal biomarker run‐in of Aβ‐PET may be useful for the identification of early‐risk groups for prevention trials. Future work will establish whether other features (e.g. genetics, neuroinflammatory markers, functional ima
doi_str_mv 10.1002/alz.068001
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_alz_068001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ068001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c771-8c9bc2f1cb7435e391e00d11f938debc743f7d5f269261b70b3902843809e5e33</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqWw8As8I6WcnebDY1WgIFWwdGKJHOcc3DpxZSdU5deTKhUj051ePe_p9BByz2DGAPijtD8zSHMAdkEmLEl4lPBMXP7tKVyTmxC2AHPIWTIh4Qm1aU1b0-4L6WLzTrWXDR6c39E-nHLr2tp0fWVaaWlpXCP9Dj3tvNyi6pw3GKjHb5Q2UNlSbNDXp55sjtaZikql-qa3sjOupbV3_f6WXOmBxrvznJLNy_Nm-RqtP1Zvy8U6UlnGolyJUnHNVJnN4wRjwRCgYkyLOK-wVEOqsyrRPBU8ZWUGZSyA5_M4B4EDH0_Jw3hWeReCR13svRm-PxYMipOtYrBVjLYGmI3wwVg8_kMWi_XnufMLZHhuvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Defining the ATN framework using longitudinal biomarker trajectories reveals an emerging amyloid accumulation group</title><source>Wiley-Blackwell Journals</source><creator>Boyle, Rory Thomas ; Coughlan, Gillian T ; Properzi, Michael J ; Archdeacon, Claire ; Chou, Hsiang‐Chin Lori ; Klinger, Hannah ; Jacobs, Heidi I.L. ; Papp, Kathryn V. ; Amariglio, Rebecca E. ; Farrell, Michelle E. ; Donohue, Michael C. ; Hohman, Timothy J. ; Mormino, Elizabeth C. ; Hanseeuw, Bernard J ; Chhatwal, Jasmeer P. ; Rentz, Dorene M. ; Price, Julie C ; Johnson, Keith A. ; Schultz, Aaron P. ; Sperling, Reisa A. ; Buckley, Rachel F.</creator><creatorcontrib>Boyle, Rory Thomas ; Coughlan, Gillian T ; Properzi, Michael J ; Archdeacon, Claire ; Chou, Hsiang‐Chin Lori ; Klinger, Hannah ; Jacobs, Heidi I.L. ; Papp, Kathryn V. ; Amariglio, Rebecca E. ; Farrell, Michelle E. ; Donohue, Michael C. ; Hohman, Timothy J. ; Mormino, Elizabeth C. ; Hanseeuw, Bernard J ; Chhatwal, Jasmeer P. ; Rentz, Dorene M. ; Price, Julie C ; Johnson, Keith A. ; Schultz, Aaron P. ; Sperling, Reisa A. ; Buckley, Rachel F. ; The Harvard Aging Brain Study</creatorcontrib><description>Background The ATN framework is defined by cross‐sectional biomarkers of β‐amyloid (Aβ), tau and neurodegeneration. Given that prevention trials, e.g., AHEAD 3‐45, are focused on individuals who have lower Aβ than established thresholds, we investigated whether defining the ATN framework using longitudinal biomarker trajectories might better identify an at‐risk sample within this boundary. Here, we applied a data‐driven method to re‐define the ATN with longitudinal biomarker data from the Harvard Aging Brain Study (HABS) and we then replicated this longitudinal framework in ADNI. Method 157 HABS participants were clinically‐normal at baseline and underwent at least two Pittsburgh Compound‐B [PiB]‐PET, Flortaucipir‐PET, and T1‐weighted MRI scans. To define longitudinal ATN, we applied latent class mixture models (LCMM) to each biomarker (global Aβ DVR, entorhinal tau SUVr, ICV‐adjusted hippocampal volume) separately, adjusting for age, and including random intercept and slopes. Akaike information criteria (AIC) determined the best‐fitting models out of two‐group or three‐group solutions with linear or spline‐link functions. We compared longitudinal ATN profiles on demographics and an optimized estimate of cognitive change (derived from longitudinal Preclinical Alzheimer Cognitive Composite (PACC) data). Result Aβ trajectories (Fig.1a) were best categorized by one stable (A→) and two accumulating subgroups, a predominantly amyloid‐negative at baseline subgroup (A‐↑) and an entirely amyloid positive at baseline subgroup (A+↑). Tau (Fig.1b) and neurodegeneration (Fig.1c) were optimally defined by stable (T→/N→) vs accumulating/atrophying (T↑/N↑) groups, respectively. These groups were replicated in ADNI (Fig.2). The entire A‐↑ subgroup were stable on T and N (A‐↑/T→/N→) and were predominantly A‐/T‐/N‐ at baseline (86%; Table 1). By contrast, 38% of A+↑ individuals changed on T, or T&amp;N. A‐↑/T→/N→ demographically most closely resembled the longitudinally‐stable ATN group (A→/T→/N→), but were older, more likely to carry e4+ and exhibited higher baseline Aβ (Table 2). Although demonstrating Aβ accumulation, A‐↑/T→/N→ did not exhibit greater cognitive decline versus the stable group (A→/T→/N→; Fig. 3). Conclusion Our findings suggest that a longitudinal biomarker run‐in of Aβ‐PET may be useful for the identification of early‐risk groups for prevention trials. Future work will establish whether other features (e.g. genetics, neuroinflammatory markers, functional imaging) can help to distinguish this cohort.</description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.068001</identifier><language>eng</language><ispartof>Alzheimer's &amp; dementia, 2022-12, Vol.18 (S6), p.n/a</ispartof><rights>2022 the Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Falz.068001$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Falz.068001$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27929,27930,45579,45580</link.rule.ids></links><search><creatorcontrib>Boyle, Rory Thomas</creatorcontrib><creatorcontrib>Coughlan, Gillian T</creatorcontrib><creatorcontrib>Properzi, Michael J</creatorcontrib><creatorcontrib>Archdeacon, Claire</creatorcontrib><creatorcontrib>Chou, Hsiang‐Chin Lori</creatorcontrib><creatorcontrib>Klinger, Hannah</creatorcontrib><creatorcontrib>Jacobs, Heidi I.L.</creatorcontrib><creatorcontrib>Papp, Kathryn V.</creatorcontrib><creatorcontrib>Amariglio, Rebecca E.</creatorcontrib><creatorcontrib>Farrell, Michelle E.</creatorcontrib><creatorcontrib>Donohue, Michael C.</creatorcontrib><creatorcontrib>Hohman, Timothy J.</creatorcontrib><creatorcontrib>Mormino, Elizabeth C.</creatorcontrib><creatorcontrib>Hanseeuw, Bernard J</creatorcontrib><creatorcontrib>Chhatwal, Jasmeer P.</creatorcontrib><creatorcontrib>Rentz, Dorene M.</creatorcontrib><creatorcontrib>Price, Julie C</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Schultz, Aaron P.</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Buckley, Rachel F.</creatorcontrib><creatorcontrib>The Harvard Aging Brain Study</creatorcontrib><title>Defining the ATN framework using longitudinal biomarker trajectories reveals an emerging amyloid accumulation group</title><title>Alzheimer's &amp; dementia</title><description>Background The ATN framework is defined by cross‐sectional biomarkers of β‐amyloid (Aβ), tau and neurodegeneration. Given that prevention trials, e.g., AHEAD 3‐45, are focused on individuals who have lower Aβ than established thresholds, we investigated whether defining the ATN framework using longitudinal biomarker trajectories might better identify an at‐risk sample within this boundary. Here, we applied a data‐driven method to re‐define the ATN with longitudinal biomarker data from the Harvard Aging Brain Study (HABS) and we then replicated this longitudinal framework in ADNI. Method 157 HABS participants were clinically‐normal at baseline and underwent at least two Pittsburgh Compound‐B [PiB]‐PET, Flortaucipir‐PET, and T1‐weighted MRI scans. To define longitudinal ATN, we applied latent class mixture models (LCMM) to each biomarker (global Aβ DVR, entorhinal tau SUVr, ICV‐adjusted hippocampal volume) separately, adjusting for age, and including random intercept and slopes. Akaike information criteria (AIC) determined the best‐fitting models out of two‐group or three‐group solutions with linear or spline‐link functions. We compared longitudinal ATN profiles on demographics and an optimized estimate of cognitive change (derived from longitudinal Preclinical Alzheimer Cognitive Composite (PACC) data). Result Aβ trajectories (Fig.1a) were best categorized by one stable (A→) and two accumulating subgroups, a predominantly amyloid‐negative at baseline subgroup (A‐↑) and an entirely amyloid positive at baseline subgroup (A+↑). Tau (Fig.1b) and neurodegeneration (Fig.1c) were optimally defined by stable (T→/N→) vs accumulating/atrophying (T↑/N↑) groups, respectively. These groups were replicated in ADNI (Fig.2). The entire A‐↑ subgroup were stable on T and N (A‐↑/T→/N→) and were predominantly A‐/T‐/N‐ at baseline (86%; Table 1). By contrast, 38% of A+↑ individuals changed on T, or T&amp;N. A‐↑/T→/N→ demographically most closely resembled the longitudinally‐stable ATN group (A→/T→/N→), but were older, more likely to carry e4+ and exhibited higher baseline Aβ (Table 2). Although demonstrating Aβ accumulation, A‐↑/T→/N→ did not exhibit greater cognitive decline versus the stable group (A→/T→/N→; Fig. 3). Conclusion Our findings suggest that a longitudinal biomarker run‐in of Aβ‐PET may be useful for the identification of early‐risk groups for prevention trials. Future work will establish whether other features (e.g. genetics, neuroinflammatory markers, functional imaging) can help to distinguish this cohort.</description><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqWw8As8I6WcnebDY1WgIFWwdGKJHOcc3DpxZSdU5deTKhUj051ePe_p9BByz2DGAPijtD8zSHMAdkEmLEl4lPBMXP7tKVyTmxC2AHPIWTIh4Qm1aU1b0-4L6WLzTrWXDR6c39E-nHLr2tp0fWVaaWlpXCP9Dj3tvNyi6pw3GKjHb5Q2UNlSbNDXp55sjtaZikql-qa3sjOupbV3_f6WXOmBxrvznJLNy_Nm-RqtP1Zvy8U6UlnGolyJUnHNVJnN4wRjwRCgYkyLOK-wVEOqsyrRPBU8ZWUGZSyA5_M4B4EDH0_Jw3hWeReCR13svRm-PxYMipOtYrBVjLYGmI3wwVg8_kMWi_XnufMLZHhuvQ</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Boyle, Rory Thomas</creator><creator>Coughlan, Gillian T</creator><creator>Properzi, Michael J</creator><creator>Archdeacon, Claire</creator><creator>Chou, Hsiang‐Chin Lori</creator><creator>Klinger, Hannah</creator><creator>Jacobs, Heidi I.L.</creator><creator>Papp, Kathryn V.</creator><creator>Amariglio, Rebecca E.</creator><creator>Farrell, Michelle E.</creator><creator>Donohue, Michael C.</creator><creator>Hohman, Timothy J.</creator><creator>Mormino, Elizabeth C.</creator><creator>Hanseeuw, Bernard J</creator><creator>Chhatwal, Jasmeer P.</creator><creator>Rentz, Dorene M.</creator><creator>Price, Julie C</creator><creator>Johnson, Keith A.</creator><creator>Schultz, Aaron P.</creator><creator>Sperling, Reisa A.</creator><creator>Buckley, Rachel F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202212</creationdate><title>Defining the ATN framework using longitudinal biomarker trajectories reveals an emerging amyloid accumulation group</title><author>Boyle, Rory Thomas ; Coughlan, Gillian T ; Properzi, Michael J ; Archdeacon, Claire ; Chou, Hsiang‐Chin Lori ; Klinger, Hannah ; Jacobs, Heidi I.L. ; Papp, Kathryn V. ; Amariglio, Rebecca E. ; Farrell, Michelle E. ; Donohue, Michael C. ; Hohman, Timothy J. ; Mormino, Elizabeth C. ; Hanseeuw, Bernard J ; Chhatwal, Jasmeer P. ; Rentz, Dorene M. ; Price, Julie C ; Johnson, Keith A. ; Schultz, Aaron P. ; Sperling, Reisa A. ; Buckley, Rachel F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c771-8c9bc2f1cb7435e391e00d11f938debc743f7d5f269261b70b3902843809e5e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boyle, Rory Thomas</creatorcontrib><creatorcontrib>Coughlan, Gillian T</creatorcontrib><creatorcontrib>Properzi, Michael J</creatorcontrib><creatorcontrib>Archdeacon, Claire</creatorcontrib><creatorcontrib>Chou, Hsiang‐Chin Lori</creatorcontrib><creatorcontrib>Klinger, Hannah</creatorcontrib><creatorcontrib>Jacobs, Heidi I.L.</creatorcontrib><creatorcontrib>Papp, Kathryn V.</creatorcontrib><creatorcontrib>Amariglio, Rebecca E.</creatorcontrib><creatorcontrib>Farrell, Michelle E.</creatorcontrib><creatorcontrib>Donohue, Michael C.</creatorcontrib><creatorcontrib>Hohman, Timothy J.</creatorcontrib><creatorcontrib>Mormino, Elizabeth C.</creatorcontrib><creatorcontrib>Hanseeuw, Bernard J</creatorcontrib><creatorcontrib>Chhatwal, Jasmeer P.</creatorcontrib><creatorcontrib>Rentz, Dorene M.</creatorcontrib><creatorcontrib>Price, Julie C</creatorcontrib><creatorcontrib>Johnson, Keith A.</creatorcontrib><creatorcontrib>Schultz, Aaron P.</creatorcontrib><creatorcontrib>Sperling, Reisa A.</creatorcontrib><creatorcontrib>Buckley, Rachel F.</creatorcontrib><creatorcontrib>The Harvard Aging Brain Study</creatorcontrib><collection>CrossRef</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boyle, Rory Thomas</au><au>Coughlan, Gillian T</au><au>Properzi, Michael J</au><au>Archdeacon, Claire</au><au>Chou, Hsiang‐Chin Lori</au><au>Klinger, Hannah</au><au>Jacobs, Heidi I.L.</au><au>Papp, Kathryn V.</au><au>Amariglio, Rebecca E.</au><au>Farrell, Michelle E.</au><au>Donohue, Michael C.</au><au>Hohman, Timothy J.</au><au>Mormino, Elizabeth C.</au><au>Hanseeuw, Bernard J</au><au>Chhatwal, Jasmeer P.</au><au>Rentz, Dorene M.</au><au>Price, Julie C</au><au>Johnson, Keith A.</au><au>Schultz, Aaron P.</au><au>Sperling, Reisa A.</au><au>Buckley, Rachel F.</au><aucorp>The Harvard Aging Brain Study</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining the ATN framework using longitudinal biomarker trajectories reveals an emerging amyloid accumulation group</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><date>2022-12</date><risdate>2022</risdate><volume>18</volume><issue>S6</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract>Background The ATN framework is defined by cross‐sectional biomarkers of β‐amyloid (Aβ), tau and neurodegeneration. Given that prevention trials, e.g., AHEAD 3‐45, are focused on individuals who have lower Aβ than established thresholds, we investigated whether defining the ATN framework using longitudinal biomarker trajectories might better identify an at‐risk sample within this boundary. Here, we applied a data‐driven method to re‐define the ATN with longitudinal biomarker data from the Harvard Aging Brain Study (HABS) and we then replicated this longitudinal framework in ADNI. Method 157 HABS participants were clinically‐normal at baseline and underwent at least two Pittsburgh Compound‐B [PiB]‐PET, Flortaucipir‐PET, and T1‐weighted MRI scans. To define longitudinal ATN, we applied latent class mixture models (LCMM) to each biomarker (global Aβ DVR, entorhinal tau SUVr, ICV‐adjusted hippocampal volume) separately, adjusting for age, and including random intercept and slopes. Akaike information criteria (AIC) determined the best‐fitting models out of two‐group or three‐group solutions with linear or spline‐link functions. We compared longitudinal ATN profiles on demographics and an optimized estimate of cognitive change (derived from longitudinal Preclinical Alzheimer Cognitive Composite (PACC) data). Result Aβ trajectories (Fig.1a) were best categorized by one stable (A→) and two accumulating subgroups, a predominantly amyloid‐negative at baseline subgroup (A‐↑) and an entirely amyloid positive at baseline subgroup (A+↑). Tau (Fig.1b) and neurodegeneration (Fig.1c) were optimally defined by stable (T→/N→) vs accumulating/atrophying (T↑/N↑) groups, respectively. These groups were replicated in ADNI (Fig.2). The entire A‐↑ subgroup were stable on T and N (A‐↑/T→/N→) and were predominantly A‐/T‐/N‐ at baseline (86%; Table 1). By contrast, 38% of A+↑ individuals changed on T, or T&amp;N. A‐↑/T→/N→ demographically most closely resembled the longitudinally‐stable ATN group (A→/T→/N→), but were older, more likely to carry e4+ and exhibited higher baseline Aβ (Table 2). Although demonstrating Aβ accumulation, A‐↑/T→/N→ did not exhibit greater cognitive decline versus the stable group (A→/T→/N→; Fig. 3). Conclusion Our findings suggest that a longitudinal biomarker run‐in of Aβ‐PET may be useful for the identification of early‐risk groups for prevention trials. Future work will establish whether other features (e.g. genetics, neuroinflammatory markers, functional imaging) can help to distinguish this cohort.</abstract><doi>10.1002/alz.068001</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2022-12, Vol.18 (S6), p.n/a
issn 1552-5260
1552-5279
language eng
recordid cdi_crossref_primary_10_1002_alz_068001
source Wiley-Blackwell Journals
title Defining the ATN framework using longitudinal biomarker trajectories reveals an emerging amyloid accumulation group
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20the%20ATN%20framework%20using%20longitudinal%20biomarker%20trajectories%20reveals%20an%20emerging%20amyloid%20accumulation%20group&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Boyle,%20Rory%20Thomas&rft.aucorp=The%20Harvard%20Aging%20Brain%20Study&rft.date=2022-12&rft.volume=18&rft.issue=S6&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.068001&rft_dat=%3Cwiley_cross%3EALZ068001%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true