Cell‐autonomous role of the AD susceptibility gene BIN1 in the regulation of hiPSC‐derived neurons network activity

Background Alzheimer’s disease (AD) is a multifactorial disease with a strong genetic background. Recent genomic wide association studies have identified several loci linked to an increased risk of AD. However, genes regulated by these variants and the pathophysiological mechanisms regulated by thos...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2023-06, Vol.19 (S1), p.n/a
Hauptverfasser: Saha, Orthis, De Farias, Ana‐Raquel Melo, Pelletier, Alexandre R, Kilinc, Devrim, Delahaye, Fabien R, Queiroz, Claudio M, Lambert, Jean‐Charles, Costa, Marcos R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S1
container_start_page
container_title Alzheimer's & dementia
container_volume 19
creator Saha, Orthis
De Farias, Ana‐Raquel Melo
Pelletier, Alexandre R
Kilinc, Devrim
Delahaye, Fabien R
Queiroz, Claudio M
Lambert, Jean‐Charles
Costa, Marcos R
description Background Alzheimer’s disease (AD) is a multifactorial disease with a strong genetic background. Recent genomic wide association studies have identified several loci linked to an increased risk of AD. However, genes regulated by these variants and the pathophysiological mechanisms regulated by those genes remain largely elusive. In this work, we studied the role of Bridging Integrator 1 (BIN1), the second most important AD risk gene after APOE, in neurons generated from human induced pluripotent stem cells (hiPSCs) in bi‐dimensional cultures and cerebral organoids. Method We generated isogenic BIN1 wild‐type (WT), heterozygous (HET) and knockout (KO) hiPSC lines and used these cells to generate human‐induced neurons (hiNs) in bi‐dimensional (2D) and three‐dimensional (cerebral organoids) cell cultures. Next, we used calcium imaging and multi‐electrode array electrophysiology to study the functional properties of hiNs networks. Single‐nucleus RNA‐sequencing (snRNAseq) was used to identify gene expression alterations in individual cell types/subtypes. APP processing and TAU phosphorylation was assessed by western blotting and Alphalisa. Result We observed that deletion of BIN1 is sufficient to cause neuronal hyperactivation and network desynchronization in a cell‐autonomous fashion. These functional changes are observed both in 2D cultures and cerebral organoids, and are correlated with increased Tau phosphorylation and transcriptional changes similar to those observed in the brains of AD patients, particularly in glutamatergic neurons. Conclusion Our results reveal a role for BIN1 in the regulation of electrical activity in human neurons and suggest that its implication in AD pathogenesis could be related to the neuronal and network dysfunctions observed in the AD brain.
doi_str_mv 10.1002/alz.062236
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_alz_062236</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ062236</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1136-ac8dae89b369dc34223e1964fee9441bdfc66e036f719d7838b36884d7128f5b3</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqWw8ASekQJ2nDjOWMJfpQqQgIUlcpyb1uDGlZ20KhOPwDPyJLi0YmQ6d_jOke6H0Ckl55SQ-EKaj3PC45jxPTSgaRpHaZzl-383J4foyPs3QhIiaDpAqwKM-f78kn1nWzu3vcfOGsC2wd0M8OgK-94rWHS60kZ3azyFFvDl-J5i3f4iDqa9kZ227aY0049PRdirwekl1LiF3tnWh-xW1r1jqTq9DDvH6KCRxsPJLofo5eb6ubiLJg-342I0iRSljEdSiVqCyCvG81qxJHwGNOdJA5AnCa3qRnEOhPEmo3mdCSYCKURSZzQWTVqxITrb7ipnvXfQlAun59KtS0rKjbIyKCu3ygJMt_BKG1j_Q5ajyeuu8wOuqnFt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Cell‐autonomous role of the AD susceptibility gene BIN1 in the regulation of hiPSC‐derived neurons network activity</title><source>Wiley Online Library All Journals</source><creator>Saha, Orthis ; De Farias, Ana‐Raquel Melo ; Pelletier, Alexandre R ; Kilinc, Devrim ; Delahaye, Fabien R ; Queiroz, Claudio M ; Lambert, Jean‐Charles ; Costa, Marcos R</creator><creatorcontrib>Saha, Orthis ; De Farias, Ana‐Raquel Melo ; Pelletier, Alexandre R ; Kilinc, Devrim ; Delahaye, Fabien R ; Queiroz, Claudio M ; Lambert, Jean‐Charles ; Costa, Marcos R</creatorcontrib><description>Background Alzheimer’s disease (AD) is a multifactorial disease with a strong genetic background. Recent genomic wide association studies have identified several loci linked to an increased risk of AD. However, genes regulated by these variants and the pathophysiological mechanisms regulated by those genes remain largely elusive. In this work, we studied the role of Bridging Integrator 1 (BIN1), the second most important AD risk gene after APOE, in neurons generated from human induced pluripotent stem cells (hiPSCs) in bi‐dimensional cultures and cerebral organoids. Method We generated isogenic BIN1 wild‐type (WT), heterozygous (HET) and knockout (KO) hiPSC lines and used these cells to generate human‐induced neurons (hiNs) in bi‐dimensional (2D) and three‐dimensional (cerebral organoids) cell cultures. Next, we used calcium imaging and multi‐electrode array electrophysiology to study the functional properties of hiNs networks. Single‐nucleus RNA‐sequencing (snRNAseq) was used to identify gene expression alterations in individual cell types/subtypes. APP processing and TAU phosphorylation was assessed by western blotting and Alphalisa. Result We observed that deletion of BIN1 is sufficient to cause neuronal hyperactivation and network desynchronization in a cell‐autonomous fashion. These functional changes are observed both in 2D cultures and cerebral organoids, and are correlated with increased Tau phosphorylation and transcriptional changes similar to those observed in the brains of AD patients, particularly in glutamatergic neurons. Conclusion Our results reveal a role for BIN1 in the regulation of electrical activity in human neurons and suggest that its implication in AD pathogenesis could be related to the neuronal and network dysfunctions observed in the AD brain.</description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.062236</identifier><language>eng</language><ispartof>Alzheimer's &amp; dementia, 2023-06, Vol.19 (S1), p.n/a</ispartof><rights>2023 the Alzheimer's Association.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Falz.062236$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Falz.062236$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids></links><search><creatorcontrib>Saha, Orthis</creatorcontrib><creatorcontrib>De Farias, Ana‐Raquel Melo</creatorcontrib><creatorcontrib>Pelletier, Alexandre R</creatorcontrib><creatorcontrib>Kilinc, Devrim</creatorcontrib><creatorcontrib>Delahaye, Fabien R</creatorcontrib><creatorcontrib>Queiroz, Claudio M</creatorcontrib><creatorcontrib>Lambert, Jean‐Charles</creatorcontrib><creatorcontrib>Costa, Marcos R</creatorcontrib><title>Cell‐autonomous role of the AD susceptibility gene BIN1 in the regulation of hiPSC‐derived neurons network activity</title><title>Alzheimer's &amp; dementia</title><description>Background Alzheimer’s disease (AD) is a multifactorial disease with a strong genetic background. Recent genomic wide association studies have identified several loci linked to an increased risk of AD. However, genes regulated by these variants and the pathophysiological mechanisms regulated by those genes remain largely elusive. In this work, we studied the role of Bridging Integrator 1 (BIN1), the second most important AD risk gene after APOE, in neurons generated from human induced pluripotent stem cells (hiPSCs) in bi‐dimensional cultures and cerebral organoids. Method We generated isogenic BIN1 wild‐type (WT), heterozygous (HET) and knockout (KO) hiPSC lines and used these cells to generate human‐induced neurons (hiNs) in bi‐dimensional (2D) and three‐dimensional (cerebral organoids) cell cultures. Next, we used calcium imaging and multi‐electrode array electrophysiology to study the functional properties of hiNs networks. Single‐nucleus RNA‐sequencing (snRNAseq) was used to identify gene expression alterations in individual cell types/subtypes. APP processing and TAU phosphorylation was assessed by western blotting and Alphalisa. Result We observed that deletion of BIN1 is sufficient to cause neuronal hyperactivation and network desynchronization in a cell‐autonomous fashion. These functional changes are observed both in 2D cultures and cerebral organoids, and are correlated with increased Tau phosphorylation and transcriptional changes similar to those observed in the brains of AD patients, particularly in glutamatergic neurons. Conclusion Our results reveal a role for BIN1 in the regulation of electrical activity in human neurons and suggest that its implication in AD pathogenesis could be related to the neuronal and network dysfunctions observed in the AD brain.</description><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqWw8ASekQJ2nDjOWMJfpQqQgIUlcpyb1uDGlZ20KhOPwDPyJLi0YmQ6d_jOke6H0Ckl55SQ-EKaj3PC45jxPTSgaRpHaZzl-383J4foyPs3QhIiaDpAqwKM-f78kn1nWzu3vcfOGsC2wd0M8OgK-94rWHS60kZ3azyFFvDl-J5i3f4iDqa9kZ227aY0049PRdirwekl1LiF3tnWh-xW1r1jqTq9DDvH6KCRxsPJLofo5eb6ubiLJg-342I0iRSljEdSiVqCyCvG81qxJHwGNOdJA5AnCa3qRnEOhPEmo3mdCSYCKURSZzQWTVqxITrb7ipnvXfQlAun59KtS0rKjbIyKCu3ygJMt_BKG1j_Q5ajyeuu8wOuqnFt</recordid><startdate>202306</startdate><enddate>202306</enddate><creator>Saha, Orthis</creator><creator>De Farias, Ana‐Raquel Melo</creator><creator>Pelletier, Alexandre R</creator><creator>Kilinc, Devrim</creator><creator>Delahaye, Fabien R</creator><creator>Queiroz, Claudio M</creator><creator>Lambert, Jean‐Charles</creator><creator>Costa, Marcos R</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202306</creationdate><title>Cell‐autonomous role of the AD susceptibility gene BIN1 in the regulation of hiPSC‐derived neurons network activity</title><author>Saha, Orthis ; De Farias, Ana‐Raquel Melo ; Pelletier, Alexandre R ; Kilinc, Devrim ; Delahaye, Fabien R ; Queiroz, Claudio M ; Lambert, Jean‐Charles ; Costa, Marcos R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1136-ac8dae89b369dc34223e1964fee9441bdfc66e036f719d7838b36884d7128f5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saha, Orthis</creatorcontrib><creatorcontrib>De Farias, Ana‐Raquel Melo</creatorcontrib><creatorcontrib>Pelletier, Alexandre R</creatorcontrib><creatorcontrib>Kilinc, Devrim</creatorcontrib><creatorcontrib>Delahaye, Fabien R</creatorcontrib><creatorcontrib>Queiroz, Claudio M</creatorcontrib><creatorcontrib>Lambert, Jean‐Charles</creatorcontrib><creatorcontrib>Costa, Marcos R</creatorcontrib><collection>CrossRef</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saha, Orthis</au><au>De Farias, Ana‐Raquel Melo</au><au>Pelletier, Alexandre R</au><au>Kilinc, Devrim</au><au>Delahaye, Fabien R</au><au>Queiroz, Claudio M</au><au>Lambert, Jean‐Charles</au><au>Costa, Marcos R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cell‐autonomous role of the AD susceptibility gene BIN1 in the regulation of hiPSC‐derived neurons network activity</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><date>2023-06</date><risdate>2023</risdate><volume>19</volume><issue>S1</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract>Background Alzheimer’s disease (AD) is a multifactorial disease with a strong genetic background. Recent genomic wide association studies have identified several loci linked to an increased risk of AD. However, genes regulated by these variants and the pathophysiological mechanisms regulated by those genes remain largely elusive. In this work, we studied the role of Bridging Integrator 1 (BIN1), the second most important AD risk gene after APOE, in neurons generated from human induced pluripotent stem cells (hiPSCs) in bi‐dimensional cultures and cerebral organoids. Method We generated isogenic BIN1 wild‐type (WT), heterozygous (HET) and knockout (KO) hiPSC lines and used these cells to generate human‐induced neurons (hiNs) in bi‐dimensional (2D) and three‐dimensional (cerebral organoids) cell cultures. Next, we used calcium imaging and multi‐electrode array electrophysiology to study the functional properties of hiNs networks. Single‐nucleus RNA‐sequencing (snRNAseq) was used to identify gene expression alterations in individual cell types/subtypes. APP processing and TAU phosphorylation was assessed by western blotting and Alphalisa. Result We observed that deletion of BIN1 is sufficient to cause neuronal hyperactivation and network desynchronization in a cell‐autonomous fashion. These functional changes are observed both in 2D cultures and cerebral organoids, and are correlated with increased Tau phosphorylation and transcriptional changes similar to those observed in the brains of AD patients, particularly in glutamatergic neurons. Conclusion Our results reveal a role for BIN1 in the regulation of electrical activity in human neurons and suggest that its implication in AD pathogenesis could be related to the neuronal and network dysfunctions observed in the AD brain.</abstract><doi>10.1002/alz.062236</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2023-06, Vol.19 (S1), p.n/a
issn 1552-5260
1552-5279
language eng
recordid cdi_crossref_primary_10_1002_alz_062236
source Wiley Online Library All Journals
title Cell‐autonomous role of the AD susceptibility gene BIN1 in the regulation of hiPSC‐derived neurons network activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A56%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cell%E2%80%90autonomous%20role%20of%20the%20AD%20susceptibility%20gene%20BIN1%20in%20the%20regulation%20of%20hiPSC%E2%80%90derived%20neurons%20network%20activity&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=Saha,%20Orthis&rft.date=2023-06&rft.volume=19&rft.issue=S1&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.062236&rft_dat=%3Cwiley_cross%3EALZ062236%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true