A data‐driven disease progression model of fluid biomarkers in genetic FTD

Background Several fluid biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), gliosis (glial fibr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Alzheimer's & dementia 2021-12, Vol.17 (S5), p.n/a
Hauptverfasser: van der Ende, Emma, Bron, Esther E., Poos, Jackie M., Jiskoot, Lize C., Panman, Jessica L., Papma, Janne M., Wilke, Carlo, Synofzik, Matthis, Heller, Carolin, Swift, Imogen J., Esteve, Aitana Sogorb, Bouzigues, Arabella, Borroni, Barbara, Sanchez‐Valle, Raquel, Moreno, Fermin, Graff, Caroline, Laforce, Robert, Galimberti, Daniela, Masellis, Mario, Tartaglia, Maria Carmela, Finger, Elizabeth, Vandenberghe, Rik, Rowe, James B., Mendonca, Alexandre, Tagliavini, Fabrizio, Santana, Isabel, Ducharme, Simon, Butler, Christopher, Gerhard, Alexander, Levin, Johannes, Danek, Adrian, Otto, Markus, Pijnenburg, Yolande A.L., Frisoni, Giovanni B., Sorbi, Sandro, Ghidoni, Roberta, Niessen, Wiro J., Rohrer, Jonathan D., Klein, Stefan, van Swieten, John C, Venkatraghavan, Vikram, Seelaar, Harro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue S5
container_start_page
container_title Alzheimer's & dementia
container_volume 17
creator van der Ende, Emma
Bron, Esther E.
Poos, Jackie M.
Jiskoot, Lize C.
Panman, Jessica L.
Papma, Janne M.
Wilke, Carlo
Synofzik, Matthis
Heller, Carolin
Swift, Imogen J.
Esteve, Aitana Sogorb
Bouzigues, Arabella
Borroni, Barbara
Sanchez‐Valle, Raquel
Moreno, Fermin
Graff, Caroline
Laforce, Robert
Galimberti, Daniela
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
Vandenberghe, Rik
Rowe, James B.
Mendonca, Alexandre
Tagliavini, Fabrizio
Santana, Isabel
Ducharme, Simon
Butler, Christopher
Gerhard, Alexander
Levin, Johannes
Danek, Adrian
Otto, Markus
Pijnenburg, Yolande A.L.
Frisoni, Giovanni B.
Sorbi, Sandro
Ghidoni, Roberta
Niessen, Wiro J.
Rohrer, Jonathan D.
Klein, Stefan
van Swieten, John C
Venkatraghavan, Vikram
Seelaar, Harro
description Background Several fluid biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), gliosis (glial fibrillary acidic protein (GFAP)) and complement activation (C3b, C1q). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging in FTD and enable us to identify mutation carriers with prodromal or early‐stage FTD, which is especially important as pharmaceutical interventions emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic FTD using cross‐sectional data from the Genetic Frontotemporal dementia Initiative (GENFI). Method 276 presymptomatic and 142 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non‐carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of data collection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event‐based modelling (DEBM) and for each genetic subgroup using co‐initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data‐driven way and do not rely on prior diagnostic information or biomarker cut‐off points. We estimated individual disease severity scores based on the position of subjects along the disease progression timeline through cross‐validation. Result Cerebrospinal fluid (CSF) NPTX2 was the first detectable abnormal biomarker, followed by blood and CSF NfL, blood GFAP, blood pNfH and finally CSF C1q and C3b (Fig. 1). Biomarker orderings did not differ significantly between genetic subgroups. Estimated disease severity scores (Fig. 2) could distinguish symptomatic from presymptomatic carriers and non‐carriers with areas under the curve (AUC) of 0.84 and 0.90 respectively. The AUC to distinguish converters from non‐converting presymptomatic carriers was 0.85. Conclusion In our data‐driven disease progression models of genetic FTD, NPTX2 and NfL were the first biomarkers to become abnormal. Further research should focus on their utility as candidate selection tools for pharmaceutical trials. Estimating disease stages using DEBM could enable us to identify presymptomatic carriers ap
doi_str_mv 10.1002/alz.053497
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_alz_053497</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ALZ053497</sourcerecordid><originalsourceid>FETCH-LOGICAL-c777-a264cdb38a2790d41fb6a64aef8edb68689f6aaa9beaf0f862435fe8c2685d333</originalsourceid><addsrcrecordid>eNp9kLFOwzAURS0EEqWw8AWekVJsJ3acMSoUkCKxZGKxXuLnypAmlV1AZeIT-Ea-hKBUjEz3Duc9XR1CLjlbcMbENXQfCybTrMiPyIxLKRIp8uL4ryt2Ss5ifGYsY5rLGalKamEH359fNvg37Kn1ESEi3YZhHTBGP_R0M1js6OCo6169pY0fNhBeMETqe7rGHne-pav65pycOOgiXhxyTurVbb28T6rHu4dlWSVtnucJCJW1tkk1jNOYzbhrFKgM0Gm0jdJKF04BQNEgOOa0ElkqHepWKC1tmqZzcjW9bcMQY0BntsGPi_aGM_OrwYwazKRhhPkEv_sO9_-QpqyeDjc_RFVhMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A data‐driven disease progression model of fluid biomarkers in genetic FTD</title><source>Wiley Journals</source><creator>van der Ende, Emma ; Bron, Esther E. ; Poos, Jackie M. ; Jiskoot, Lize C. ; Panman, Jessica L. ; Papma, Janne M. ; Wilke, Carlo ; Synofzik, Matthis ; Heller, Carolin ; Swift, Imogen J. ; Esteve, Aitana Sogorb ; Bouzigues, Arabella ; Borroni, Barbara ; Sanchez‐Valle, Raquel ; Moreno, Fermin ; Graff, Caroline ; Laforce, Robert ; Galimberti, Daniela ; Masellis, Mario ; Tartaglia, Maria Carmela ; Finger, Elizabeth ; Vandenberghe, Rik ; Rowe, James B. ; Mendonca, Alexandre ; Tagliavini, Fabrizio ; Santana, Isabel ; Ducharme, Simon ; Butler, Christopher ; Gerhard, Alexander ; Levin, Johannes ; Danek, Adrian ; Otto, Markus ; Pijnenburg, Yolande A.L. ; Frisoni, Giovanni B. ; Sorbi, Sandro ; Ghidoni, Roberta ; Niessen, Wiro J. ; Rohrer, Jonathan D. ; Klein, Stefan ; van Swieten, John C ; Venkatraghavan, Vikram ; Seelaar, Harro</creator><creatorcontrib>van der Ende, Emma ; Bron, Esther E. ; Poos, Jackie M. ; Jiskoot, Lize C. ; Panman, Jessica L. ; Papma, Janne M. ; Wilke, Carlo ; Synofzik, Matthis ; Heller, Carolin ; Swift, Imogen J. ; Esteve, Aitana Sogorb ; Bouzigues, Arabella ; Borroni, Barbara ; Sanchez‐Valle, Raquel ; Moreno, Fermin ; Graff, Caroline ; Laforce, Robert ; Galimberti, Daniela ; Masellis, Mario ; Tartaglia, Maria Carmela ; Finger, Elizabeth ; Vandenberghe, Rik ; Rowe, James B. ; Mendonca, Alexandre ; Tagliavini, Fabrizio ; Santana, Isabel ; Ducharme, Simon ; Butler, Christopher ; Gerhard, Alexander ; Levin, Johannes ; Danek, Adrian ; Otto, Markus ; Pijnenburg, Yolande A.L. ; Frisoni, Giovanni B. ; Sorbi, Sandro ; Ghidoni, Roberta ; Niessen, Wiro J. ; Rohrer, Jonathan D. ; Klein, Stefan ; van Swieten, John C ; Venkatraghavan, Vikram ; Seelaar, Harro</creatorcontrib><description>Background Several fluid biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), gliosis (glial fibrillary acidic protein (GFAP)) and complement activation (C3b, C1q). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging in FTD and enable us to identify mutation carriers with prodromal or early‐stage FTD, which is especially important as pharmaceutical interventions emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic FTD using cross‐sectional data from the Genetic Frontotemporal dementia Initiative (GENFI). Method 276 presymptomatic and 142 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non‐carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of data collection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event‐based modelling (DEBM) and for each genetic subgroup using co‐initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data‐driven way and do not rely on prior diagnostic information or biomarker cut‐off points. We estimated individual disease severity scores based on the position of subjects along the disease progression timeline through cross‐validation. Result Cerebrospinal fluid (CSF) NPTX2 was the first detectable abnormal biomarker, followed by blood and CSF NfL, blood GFAP, blood pNfH and finally CSF C1q and C3b (Fig. 1). Biomarker orderings did not differ significantly between genetic subgroups. Estimated disease severity scores (Fig. 2) could distinguish symptomatic from presymptomatic carriers and non‐carriers with areas under the curve (AUC) of 0.84 and 0.90 respectively. The AUC to distinguish converters from non‐converting presymptomatic carriers was 0.85. Conclusion In our data‐driven disease progression models of genetic FTD, NPTX2 and NfL were the first biomarkers to become abnormal. Further research should focus on their utility as candidate selection tools for pharmaceutical trials. Estimating disease stages using DEBM could enable us to identify presymptomatic carriers approaching symptom onset and track the efficacy of therapeutic interventions.</description><identifier>ISSN: 1552-5260</identifier><identifier>EISSN: 1552-5279</identifier><identifier>DOI: 10.1002/alz.053497</identifier><language>eng</language><ispartof>Alzheimer's &amp; dementia, 2021-12, Vol.17 (S5), p.n/a</ispartof><rights>2021 the Alzheimer's Association</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Falz.053497$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Falz.053497$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>van der Ende, Emma</creatorcontrib><creatorcontrib>Bron, Esther E.</creatorcontrib><creatorcontrib>Poos, Jackie M.</creatorcontrib><creatorcontrib>Jiskoot, Lize C.</creatorcontrib><creatorcontrib>Panman, Jessica L.</creatorcontrib><creatorcontrib>Papma, Janne M.</creatorcontrib><creatorcontrib>Wilke, Carlo</creatorcontrib><creatorcontrib>Synofzik, Matthis</creatorcontrib><creatorcontrib>Heller, Carolin</creatorcontrib><creatorcontrib>Swift, Imogen J.</creatorcontrib><creatorcontrib>Esteve, Aitana Sogorb</creatorcontrib><creatorcontrib>Bouzigues, Arabella</creatorcontrib><creatorcontrib>Borroni, Barbara</creatorcontrib><creatorcontrib>Sanchez‐Valle, Raquel</creatorcontrib><creatorcontrib>Moreno, Fermin</creatorcontrib><creatorcontrib>Graff, Caroline</creatorcontrib><creatorcontrib>Laforce, Robert</creatorcontrib><creatorcontrib>Galimberti, Daniela</creatorcontrib><creatorcontrib>Masellis, Mario</creatorcontrib><creatorcontrib>Tartaglia, Maria Carmela</creatorcontrib><creatorcontrib>Finger, Elizabeth</creatorcontrib><creatorcontrib>Vandenberghe, Rik</creatorcontrib><creatorcontrib>Rowe, James B.</creatorcontrib><creatorcontrib>Mendonca, Alexandre</creatorcontrib><creatorcontrib>Tagliavini, Fabrizio</creatorcontrib><creatorcontrib>Santana, Isabel</creatorcontrib><creatorcontrib>Ducharme, Simon</creatorcontrib><creatorcontrib>Butler, Christopher</creatorcontrib><creatorcontrib>Gerhard, Alexander</creatorcontrib><creatorcontrib>Levin, Johannes</creatorcontrib><creatorcontrib>Danek, Adrian</creatorcontrib><creatorcontrib>Otto, Markus</creatorcontrib><creatorcontrib>Pijnenburg, Yolande A.L.</creatorcontrib><creatorcontrib>Frisoni, Giovanni B.</creatorcontrib><creatorcontrib>Sorbi, Sandro</creatorcontrib><creatorcontrib>Ghidoni, Roberta</creatorcontrib><creatorcontrib>Niessen, Wiro J.</creatorcontrib><creatorcontrib>Rohrer, Jonathan D.</creatorcontrib><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>van Swieten, John C</creatorcontrib><creatorcontrib>Venkatraghavan, Vikram</creatorcontrib><creatorcontrib>Seelaar, Harro</creatorcontrib><title>A data‐driven disease progression model of fluid biomarkers in genetic FTD</title><title>Alzheimer's &amp; dementia</title><description>Background Several fluid biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), gliosis (glial fibrillary acidic protein (GFAP)) and complement activation (C3b, C1q). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging in FTD and enable us to identify mutation carriers with prodromal or early‐stage FTD, which is especially important as pharmaceutical interventions emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic FTD using cross‐sectional data from the Genetic Frontotemporal dementia Initiative (GENFI). Method 276 presymptomatic and 142 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non‐carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of data collection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event‐based modelling (DEBM) and for each genetic subgroup using co‐initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data‐driven way and do not rely on prior diagnostic information or biomarker cut‐off points. We estimated individual disease severity scores based on the position of subjects along the disease progression timeline through cross‐validation. Result Cerebrospinal fluid (CSF) NPTX2 was the first detectable abnormal biomarker, followed by blood and CSF NfL, blood GFAP, blood pNfH and finally CSF C1q and C3b (Fig. 1). Biomarker orderings did not differ significantly between genetic subgroups. Estimated disease severity scores (Fig. 2) could distinguish symptomatic from presymptomatic carriers and non‐carriers with areas under the curve (AUC) of 0.84 and 0.90 respectively. The AUC to distinguish converters from non‐converting presymptomatic carriers was 0.85. Conclusion In our data‐driven disease progression models of genetic FTD, NPTX2 and NfL were the first biomarkers to become abnormal. Further research should focus on their utility as candidate selection tools for pharmaceutical trials. Estimating disease stages using DEBM could enable us to identify presymptomatic carriers approaching symptom onset and track the efficacy of therapeutic interventions.</description><issn>1552-5260</issn><issn>1552-5279</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAURS0EEqWw8AWekVJsJ3acMSoUkCKxZGKxXuLnypAmlV1AZeIT-Ea-hKBUjEz3Duc9XR1CLjlbcMbENXQfCybTrMiPyIxLKRIp8uL4ryt2Ss5ifGYsY5rLGalKamEH359fNvg37Kn1ESEi3YZhHTBGP_R0M1js6OCo6169pY0fNhBeMETqe7rGHne-pav65pycOOgiXhxyTurVbb28T6rHu4dlWSVtnucJCJW1tkk1jNOYzbhrFKgM0Gm0jdJKF04BQNEgOOa0ElkqHepWKC1tmqZzcjW9bcMQY0BntsGPi_aGM_OrwYwazKRhhPkEv_sO9_-QpqyeDjc_RFVhMw</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>van der Ende, Emma</creator><creator>Bron, Esther E.</creator><creator>Poos, Jackie M.</creator><creator>Jiskoot, Lize C.</creator><creator>Panman, Jessica L.</creator><creator>Papma, Janne M.</creator><creator>Wilke, Carlo</creator><creator>Synofzik, Matthis</creator><creator>Heller, Carolin</creator><creator>Swift, Imogen J.</creator><creator>Esteve, Aitana Sogorb</creator><creator>Bouzigues, Arabella</creator><creator>Borroni, Barbara</creator><creator>Sanchez‐Valle, Raquel</creator><creator>Moreno, Fermin</creator><creator>Graff, Caroline</creator><creator>Laforce, Robert</creator><creator>Galimberti, Daniela</creator><creator>Masellis, Mario</creator><creator>Tartaglia, Maria Carmela</creator><creator>Finger, Elizabeth</creator><creator>Vandenberghe, Rik</creator><creator>Rowe, James B.</creator><creator>Mendonca, Alexandre</creator><creator>Tagliavini, Fabrizio</creator><creator>Santana, Isabel</creator><creator>Ducharme, Simon</creator><creator>Butler, Christopher</creator><creator>Gerhard, Alexander</creator><creator>Levin, Johannes</creator><creator>Danek, Adrian</creator><creator>Otto, Markus</creator><creator>Pijnenburg, Yolande A.L.</creator><creator>Frisoni, Giovanni B.</creator><creator>Sorbi, Sandro</creator><creator>Ghidoni, Roberta</creator><creator>Niessen, Wiro J.</creator><creator>Rohrer, Jonathan D.</creator><creator>Klein, Stefan</creator><creator>van Swieten, John C</creator><creator>Venkatraghavan, Vikram</creator><creator>Seelaar, Harro</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>202112</creationdate><title>A data‐driven disease progression model of fluid biomarkers in genetic FTD</title><author>van der Ende, Emma ; Bron, Esther E. ; Poos, Jackie M. ; Jiskoot, Lize C. ; Panman, Jessica L. ; Papma, Janne M. ; Wilke, Carlo ; Synofzik, Matthis ; Heller, Carolin ; Swift, Imogen J. ; Esteve, Aitana Sogorb ; Bouzigues, Arabella ; Borroni, Barbara ; Sanchez‐Valle, Raquel ; Moreno, Fermin ; Graff, Caroline ; Laforce, Robert ; Galimberti, Daniela ; Masellis, Mario ; Tartaglia, Maria Carmela ; Finger, Elizabeth ; Vandenberghe, Rik ; Rowe, James B. ; Mendonca, Alexandre ; Tagliavini, Fabrizio ; Santana, Isabel ; Ducharme, Simon ; Butler, Christopher ; Gerhard, Alexander ; Levin, Johannes ; Danek, Adrian ; Otto, Markus ; Pijnenburg, Yolande A.L. ; Frisoni, Giovanni B. ; Sorbi, Sandro ; Ghidoni, Roberta ; Niessen, Wiro J. ; Rohrer, Jonathan D. ; Klein, Stefan ; van Swieten, John C ; Venkatraghavan, Vikram ; Seelaar, Harro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c777-a264cdb38a2790d41fb6a64aef8edb68689f6aaa9beaf0f862435fe8c2685d333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Ende, Emma</creatorcontrib><creatorcontrib>Bron, Esther E.</creatorcontrib><creatorcontrib>Poos, Jackie M.</creatorcontrib><creatorcontrib>Jiskoot, Lize C.</creatorcontrib><creatorcontrib>Panman, Jessica L.</creatorcontrib><creatorcontrib>Papma, Janne M.</creatorcontrib><creatorcontrib>Wilke, Carlo</creatorcontrib><creatorcontrib>Synofzik, Matthis</creatorcontrib><creatorcontrib>Heller, Carolin</creatorcontrib><creatorcontrib>Swift, Imogen J.</creatorcontrib><creatorcontrib>Esteve, Aitana Sogorb</creatorcontrib><creatorcontrib>Bouzigues, Arabella</creatorcontrib><creatorcontrib>Borroni, Barbara</creatorcontrib><creatorcontrib>Sanchez‐Valle, Raquel</creatorcontrib><creatorcontrib>Moreno, Fermin</creatorcontrib><creatorcontrib>Graff, Caroline</creatorcontrib><creatorcontrib>Laforce, Robert</creatorcontrib><creatorcontrib>Galimberti, Daniela</creatorcontrib><creatorcontrib>Masellis, Mario</creatorcontrib><creatorcontrib>Tartaglia, Maria Carmela</creatorcontrib><creatorcontrib>Finger, Elizabeth</creatorcontrib><creatorcontrib>Vandenberghe, Rik</creatorcontrib><creatorcontrib>Rowe, James B.</creatorcontrib><creatorcontrib>Mendonca, Alexandre</creatorcontrib><creatorcontrib>Tagliavini, Fabrizio</creatorcontrib><creatorcontrib>Santana, Isabel</creatorcontrib><creatorcontrib>Ducharme, Simon</creatorcontrib><creatorcontrib>Butler, Christopher</creatorcontrib><creatorcontrib>Gerhard, Alexander</creatorcontrib><creatorcontrib>Levin, Johannes</creatorcontrib><creatorcontrib>Danek, Adrian</creatorcontrib><creatorcontrib>Otto, Markus</creatorcontrib><creatorcontrib>Pijnenburg, Yolande A.L.</creatorcontrib><creatorcontrib>Frisoni, Giovanni B.</creatorcontrib><creatorcontrib>Sorbi, Sandro</creatorcontrib><creatorcontrib>Ghidoni, Roberta</creatorcontrib><creatorcontrib>Niessen, Wiro J.</creatorcontrib><creatorcontrib>Rohrer, Jonathan D.</creatorcontrib><creatorcontrib>Klein, Stefan</creatorcontrib><creatorcontrib>van Swieten, John C</creatorcontrib><creatorcontrib>Venkatraghavan, Vikram</creatorcontrib><creatorcontrib>Seelaar, Harro</creatorcontrib><collection>CrossRef</collection><jtitle>Alzheimer's &amp; dementia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Ende, Emma</au><au>Bron, Esther E.</au><au>Poos, Jackie M.</au><au>Jiskoot, Lize C.</au><au>Panman, Jessica L.</au><au>Papma, Janne M.</au><au>Wilke, Carlo</au><au>Synofzik, Matthis</au><au>Heller, Carolin</au><au>Swift, Imogen J.</au><au>Esteve, Aitana Sogorb</au><au>Bouzigues, Arabella</au><au>Borroni, Barbara</au><au>Sanchez‐Valle, Raquel</au><au>Moreno, Fermin</au><au>Graff, Caroline</au><au>Laforce, Robert</au><au>Galimberti, Daniela</au><au>Masellis, Mario</au><au>Tartaglia, Maria Carmela</au><au>Finger, Elizabeth</au><au>Vandenberghe, Rik</au><au>Rowe, James B.</au><au>Mendonca, Alexandre</au><au>Tagliavini, Fabrizio</au><au>Santana, Isabel</au><au>Ducharme, Simon</au><au>Butler, Christopher</au><au>Gerhard, Alexander</au><au>Levin, Johannes</au><au>Danek, Adrian</au><au>Otto, Markus</au><au>Pijnenburg, Yolande A.L.</au><au>Frisoni, Giovanni B.</au><au>Sorbi, Sandro</au><au>Ghidoni, Roberta</au><au>Niessen, Wiro J.</au><au>Rohrer, Jonathan D.</au><au>Klein, Stefan</au><au>van Swieten, John C</au><au>Venkatraghavan, Vikram</au><au>Seelaar, Harro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A data‐driven disease progression model of fluid biomarkers in genetic FTD</atitle><jtitle>Alzheimer's &amp; dementia</jtitle><date>2021-12</date><risdate>2021</risdate><volume>17</volume><issue>S5</issue><epage>n/a</epage><issn>1552-5260</issn><eissn>1552-5279</eissn><abstract>Background Several fluid biomarkers for genetic frontotemporal dementia (FTD) have been proposed, including those reflecting neuroaxonal loss (neurofilament light chain (NfL) and phosphorylated neurofilament heavy chain (pNfH)), synapse dysfunction (neuronal pentraxin 2 (NPTX2)), gliosis (glial fibrillary acidic protein (GFAP)) and complement activation (C3b, C1q). Determining the sequence in which biomarkers become abnormal over the course of disease could facilitate disease staging in FTD and enable us to identify mutation carriers with prodromal or early‐stage FTD, which is especially important as pharmaceutical interventions emerge. We aimed to model the sequence of biomarker abnormalities in presymptomatic and symptomatic genetic FTD using cross‐sectional data from the Genetic Frontotemporal dementia Initiative (GENFI). Method 276 presymptomatic and 142 symptomatic carriers of mutations in GRN, C9orf72 or MAPT, as well as 247 non‐carriers, were selected from the GENFI cohort based on availability of one or more of the aforementioned biomarkers. Nine presymptomatic carriers developed symptoms within 18 months of data collection (‘converters’). Sequences of biomarker abnormalities were modelled for the entire group using discriminative event‐based modelling (DEBM) and for each genetic subgroup using co‐initialized DEBM. These models estimate probabilistic biomarker abnormalities in a data‐driven way and do not rely on prior diagnostic information or biomarker cut‐off points. We estimated individual disease severity scores based on the position of subjects along the disease progression timeline through cross‐validation. Result Cerebrospinal fluid (CSF) NPTX2 was the first detectable abnormal biomarker, followed by blood and CSF NfL, blood GFAP, blood pNfH and finally CSF C1q and C3b (Fig. 1). Biomarker orderings did not differ significantly between genetic subgroups. Estimated disease severity scores (Fig. 2) could distinguish symptomatic from presymptomatic carriers and non‐carriers with areas under the curve (AUC) of 0.84 and 0.90 respectively. The AUC to distinguish converters from non‐converting presymptomatic carriers was 0.85. Conclusion In our data‐driven disease progression models of genetic FTD, NPTX2 and NfL were the first biomarkers to become abnormal. Further research should focus on their utility as candidate selection tools for pharmaceutical trials. Estimating disease stages using DEBM could enable us to identify presymptomatic carriers approaching symptom onset and track the efficacy of therapeutic interventions.</abstract><doi>10.1002/alz.053497</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-5260
ispartof Alzheimer's & dementia, 2021-12, Vol.17 (S5), p.n/a
issn 1552-5260
1552-5279
language eng
recordid cdi_crossref_primary_10_1002_alz_053497
source Wiley Journals
title A data‐driven disease progression model of fluid biomarkers in genetic FTD
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20data%E2%80%90driven%20disease%20progression%20model%20of%20fluid%20biomarkers%20in%20genetic%20FTD&rft.jtitle=Alzheimer's%20&%20dementia&rft.au=van%20der%20Ende,%20Emma&rft.date=2021-12&rft.volume=17&rft.issue=S5&rft.epage=n/a&rft.issn=1552-5260&rft.eissn=1552-5279&rft_id=info:doi/10.1002/alz.053497&rft_dat=%3Cwiley_cross%3EALZ053497%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true