Agglomeration during precipitation: II. Mechanism deduction from tracer data

A novel approach using a 2‐D population balance model is developed and applied to the analysis of experimental tracer crystal data. This approach is effective in discriminating among various functional forms of agglomeration kernel and enables estimation of the agglomeration kinetics. At present, th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 1995-03, Vol.41 (3), p.525-535
Hauptverfasser: Ilievski, D., Hounslow, M. J.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 535
container_issue 3
container_start_page 525
container_title AIChE journal
container_volume 41
creator Ilievski, D.
Hounslow, M. J.
description A novel approach using a 2‐D population balance model is developed and applied to the analysis of experimental tracer crystal data. This approach is effective in discriminating among various functional forms of agglomeration kernel and enables estimation of the agglomeration kinetics. At present, the analysis is restricted to three simple agglomeration kernels and shows that the size‐independent kernel best describes the agglomeration of Al(OH)3 crystals during precipitation in caustic aluminate solutions. This agrees with the findings of Ilievski and White (1994). Estimates of the agglomeration kinetic parameters from the tracer data agree well with the experimentally observed values.
doi_str_mv 10.1002/aic.690410311
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aic_690410311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AIC690410311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3021-2d32049bdcec0491c726b50dc6c1fe742e770bd61ef8f42c92e54c41915587853</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKePvvcPdN6bJk3r2xi6FetEUPQtZEk6o-s6ko65f2_dxvDJp8M5fOdeOIRcIwwQgN4opwdpDgwhQTwhPeRMxDwHfkp6AIBxF-A5uQjhs3NUZLRHyuF8vmhq61XrmmVk1t4t59HKW-1Wrt2Ft1FRDKJHqz_U0oU6Mtas9Y6ufFNHrVfa-sioVl2Ss0otgr06aJ-83t-9jCZx-TQuRsMy1glQjKlJKLB8ZrTVnaIWNJ1xMDrVWFnBqBUCZiZFW2UVozqnljPNMEfOM5HxpE_i_V3tmxC8reTKu1r5rUSQv1PIbgp5nKLjxZ7fuIXd_g_LYTH62zx8cqG138em8l8yFYng8m06ltNJOabv2YN8Tn4AANBwnw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Agglomeration during precipitation: II. Mechanism deduction from tracer data</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Ilievski, D. ; Hounslow, M. J.</creator><creatorcontrib>Ilievski, D. ; Hounslow, M. J.</creatorcontrib><description>A novel approach using a 2‐D population balance model is developed and applied to the analysis of experimental tracer crystal data. This approach is effective in discriminating among various functional forms of agglomeration kernel and enables estimation of the agglomeration kinetics. At present, the analysis is restricted to three simple agglomeration kernels and shows that the size‐independent kernel best describes the agglomeration of Al(OH)3 crystals during precipitation in caustic aluminate solutions. This agrees with the findings of Ilievski and White (1994). Estimates of the agglomeration kinetic parameters from the tracer data agree well with the experimentally observed values.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690410311</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><ispartof>AIChE journal, 1995-03, Vol.41 (3), p.525-535</ispartof><rights>Copyright © 1995 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3021-2d32049bdcec0491c726b50dc6c1fe742e770bd61ef8f42c92e54c41915587853</citedby><cites>FETCH-LOGICAL-c3021-2d32049bdcec0491c726b50dc6c1fe742e770bd61ef8f42c92e54c41915587853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690410311$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690410311$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Ilievski, D.</creatorcontrib><creatorcontrib>Hounslow, M. J.</creatorcontrib><title>Agglomeration during precipitation: II. Mechanism deduction from tracer data</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>A novel approach using a 2‐D population balance model is developed and applied to the analysis of experimental tracer crystal data. This approach is effective in discriminating among various functional forms of agglomeration kernel and enables estimation of the agglomeration kinetics. At present, the analysis is restricted to three simple agglomeration kernels and shows that the size‐independent kernel best describes the agglomeration of Al(OH)3 crystals during precipitation in caustic aluminate solutions. This agrees with the findings of Ilievski and White (1994). Estimates of the agglomeration kinetic parameters from the tracer data agree well with the experimentally observed values.</description><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKePvvcPdN6bJk3r2xi6FetEUPQtZEk6o-s6ko65f2_dxvDJp8M5fOdeOIRcIwwQgN4opwdpDgwhQTwhPeRMxDwHfkp6AIBxF-A5uQjhs3NUZLRHyuF8vmhq61XrmmVk1t4t59HKW-1Wrt2Ft1FRDKJHqz_U0oU6Mtas9Y6ufFNHrVfa-sioVl2Ss0otgr06aJ-83t-9jCZx-TQuRsMy1glQjKlJKLB8ZrTVnaIWNJ1xMDrVWFnBqBUCZiZFW2UVozqnljPNMEfOM5HxpE_i_V3tmxC8reTKu1r5rUSQv1PIbgp5nKLjxZ7fuIXd_g_LYTH62zx8cqG138em8l8yFYng8m06ltNJOabv2YN8Tn4AANBwnw</recordid><startdate>199503</startdate><enddate>199503</enddate><creator>Ilievski, D.</creator><creator>Hounslow, M. J.</creator><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199503</creationdate><title>Agglomeration during precipitation: II. Mechanism deduction from tracer data</title><author>Ilievski, D. ; Hounslow, M. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3021-2d32049bdcec0491c726b50dc6c1fe742e770bd61ef8f42c92e54c41915587853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ilievski, D.</creatorcontrib><creatorcontrib>Hounslow, M. J.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ilievski, D.</au><au>Hounslow, M. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Agglomeration during precipitation: II. Mechanism deduction from tracer data</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1995-03</date><risdate>1995</risdate><volume>41</volume><issue>3</issue><spage>525</spage><epage>535</epage><pages>525-535</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>A novel approach using a 2‐D population balance model is developed and applied to the analysis of experimental tracer crystal data. This approach is effective in discriminating among various functional forms of agglomeration kernel and enables estimation of the agglomeration kinetics. At present, the analysis is restricted to three simple agglomeration kernels and shows that the size‐independent kernel best describes the agglomeration of Al(OH)3 crystals during precipitation in caustic aluminate solutions. This agrees with the findings of Ilievski and White (1994). Estimates of the agglomeration kinetic parameters from the tracer data agree well with the experimentally observed values.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690410311</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1995-03, Vol.41 (3), p.525-535
issn 0001-1541
1547-5905
language eng
recordid cdi_crossref_primary_10_1002_aic_690410311
source Wiley Online Library Journals Frontfile Complete
title Agglomeration during precipitation: II. Mechanism deduction from tracer data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T10%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Agglomeration%20during%20precipitation:%20II.%20Mechanism%20deduction%20from%20tracer%20data&rft.jtitle=AIChE%20journal&rft.au=Ilievski,%20D.&rft.date=1995-03&rft.volume=41&rft.issue=3&rft.spage=525&rft.epage=535&rft.pages=525-535&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.690410311&rft_dat=%3Cwiley_cross%3EAIC690410311%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true