Effects of molecular characteristics of polymers on drag reduction

Turbulent measurements in capillary tubes and in pipes were made on nonpolar solutions of seven polymer species, three at more than one molecular weight, over wide concentration ranges. A critical concentration, Cc, was taken as the minimum concentration for disappearance of the turbulence transitio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE J.; (United States) 1971-03, Vol.17 (2), p.391-397
Hauptverfasser: Liaw, Gin-Chain, Zakin, Jacques L., Patterson, Gary K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 2
container_start_page 391
container_title AIChE J.; (United States)
container_volume 17
creator Liaw, Gin-Chain
Zakin, Jacques L.
Patterson, Gary K.
description Turbulent measurements in capillary tubes and in pipes were made on nonpolar solutions of seven polymer species, three at more than one molecular weight, over wide concentration ranges. A critical concentration, Cc, was taken as the minimum concentration for disappearance of the turbulence transition region. Above this concentration, friction factor‐generalized Reynolds number data show only a gradual deviation from extension of the laminar line. Cc increases with tube diameter and decreases with molecular weight. The critical dimensionless volume friction Cc [η] is less dependent on molecular weight. The levels of Cc [η] for different polymer species in a given tube show marked differences which are related to β, the molecular rigidity parameter. Low β values, or high flexibility, are associated with low Cc [η] values. Available data for Cc [η] in good and in poor solvents show little solvency effect. Polymer samples of low m′, the ratio of the polymer molecular weight to the critical tanglement molecular weight of the polymer, give solutions with little or no drag‐reducing capacity, even those with low β values. Samples must have m′ values of 50 or more to show significant drag reduction. This allows prediction of the minimum useful molecular weights for drag reduction for any polymer species. For solutions above Cc, all of these data and literature data (for aqueous and nonaqueous systems with a wide range of n′ values) fit a single f/fpv versus generalized Reynolds number relationship.
doi_str_mv 10.1002/aic.690170228
format Article
fullrecord <record><control><sourceid>wiley_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aic_690170228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AIC690170228</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4168-c88ae0fd3a6b0978b48872def390852eead0116158822701303aef89f2e79b273</originalsourceid><addsrcrecordid>eNp9kLtPwzAQxi0EEqUwskfsKWc7ie2xVH2J8hhAjJbrnGkgTSo7FfS_x1BUMTHd63d3nz5CLikMKAC7NpUdFAqoAMbkEenRPBNpriA_Jj0AoGls0FNyFsJbrJiQrEduxs6h7ULSumTd1mi3tfGJXRlvbIe-Cl1lf4abtt6t0ce8SUpvXhOP5dZ2VduckxNn6oAXv7FPnifjp9EsXTxM56PhIrUZLWRqpTQIruSmWIIScplJKViJjiuQOUM0JVBa0FxKxgRQDtygk8oxFGrJBO-Tq_3dNorSwVYd2pVtmybq13kBXGUyQukesr4NwaPTG1-tjd9pCvrbJR1d0geXIi_2_EdV4-5_WA_no7-bv5-iR_h52DT-XReCi1y_3E_13Uyqx-J2ojn_AkqXeOI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Effects of molecular characteristics of polymers on drag reduction</title><source>Access via Wiley Online Library</source><creator>Liaw, Gin-Chain ; Zakin, Jacques L. ; Patterson, Gary K.</creator><creatorcontrib>Liaw, Gin-Chain ; Zakin, Jacques L. ; Patterson, Gary K. ; Missouri Univ</creatorcontrib><description>Turbulent measurements in capillary tubes and in pipes were made on nonpolar solutions of seven polymer species, three at more than one molecular weight, over wide concentration ranges. A critical concentration, Cc, was taken as the minimum concentration for disappearance of the turbulence transition region. Above this concentration, friction factor‐generalized Reynolds number data show only a gradual deviation from extension of the laminar line. Cc increases with tube diameter and decreases with molecular weight. The critical dimensionless volume friction Cc [η] is less dependent on molecular weight. The levels of Cc [η] for different polymer species in a given tube show marked differences which are related to β, the molecular rigidity parameter. Low β values, or high flexibility, are associated with low Cc [η] values. Available data for Cc [η] in good and in poor solvents show little solvency effect. Polymer samples of low m′, the ratio of the polymer molecular weight to the critical tanglement molecular weight of the polymer, give solutions with little or no drag‐reducing capacity, even those with low β values. Samples must have m′ values of 50 or more to show significant drag reduction. This allows prediction of the minimum useful molecular weights for drag reduction for any polymer species. For solutions above Cc, all of these data and literature data (for aqueous and nonaqueous systems with a wide range of n′ values) fit a single f/fpv versus generalized Reynolds number relationship.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690170228</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><subject>02 PETROLEUM ; 020300 - Petroleum- Drilling &amp; Production ; 400301 - Organic Chemistry- Chemical &amp; Physicochemical Properties- (-1987) ; ADDITIVES ; CHEMICAL COMPOSITION ; CORRELATIONS ; DIMENSIONS ; DRAG ; FLUID FLOW ; FLUID MECHANICS ; FLUIDS ; FRICTION ; INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY ; LIQUIDS ; MECHANICS ; MOLECULAR STRUCTURE ; MOLECULAR WEIGHT ; ORGANIC COMPOUNDS ; ORGANIC POLYMERS ; PIPES ; POLYMERS ; QUANTITY RATIO ; REYNOLDS NUMBER ; RHEOLOGY ; SHEAR ; STIMULATION ; STRESSES ; TUBES ; TURBULENT FLOW ; VISCOSITY ; WELL COMPLETION ; WELL STIMULATION</subject><ispartof>AIChE J.; (United States), 1971-03, Vol.17 (2), p.391-397</ispartof><rights>Copyright © 1971 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4168-c88ae0fd3a6b0978b48872def390852eead0116158822701303aef89f2e79b273</citedby><cites>FETCH-LOGICAL-c4168-c88ae0fd3a6b0978b48872def390852eead0116158822701303aef89f2e79b273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690170228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690170228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/5603948$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Liaw, Gin-Chain</creatorcontrib><creatorcontrib>Zakin, Jacques L.</creatorcontrib><creatorcontrib>Patterson, Gary K.</creatorcontrib><creatorcontrib>Missouri Univ</creatorcontrib><title>Effects of molecular characteristics of polymers on drag reduction</title><title>AIChE J.; (United States)</title><addtitle>AIChE J</addtitle><description>Turbulent measurements in capillary tubes and in pipes were made on nonpolar solutions of seven polymer species, three at more than one molecular weight, over wide concentration ranges. A critical concentration, Cc, was taken as the minimum concentration for disappearance of the turbulence transition region. Above this concentration, friction factor‐generalized Reynolds number data show only a gradual deviation from extension of the laminar line. Cc increases with tube diameter and decreases with molecular weight. The critical dimensionless volume friction Cc [η] is less dependent on molecular weight. The levels of Cc [η] for different polymer species in a given tube show marked differences which are related to β, the molecular rigidity parameter. Low β values, or high flexibility, are associated with low Cc [η] values. Available data for Cc [η] in good and in poor solvents show little solvency effect. Polymer samples of low m′, the ratio of the polymer molecular weight to the critical tanglement molecular weight of the polymer, give solutions with little or no drag‐reducing capacity, even those with low β values. Samples must have m′ values of 50 or more to show significant drag reduction. This allows prediction of the minimum useful molecular weights for drag reduction for any polymer species. For solutions above Cc, all of these data and literature data (for aqueous and nonaqueous systems with a wide range of n′ values) fit a single f/fpv versus generalized Reynolds number relationship.</description><subject>02 PETROLEUM</subject><subject>020300 - Petroleum- Drilling &amp; Production</subject><subject>400301 - Organic Chemistry- Chemical &amp; Physicochemical Properties- (-1987)</subject><subject>ADDITIVES</subject><subject>CHEMICAL COMPOSITION</subject><subject>CORRELATIONS</subject><subject>DIMENSIONS</subject><subject>DRAG</subject><subject>FLUID FLOW</subject><subject>FLUID MECHANICS</subject><subject>FLUIDS</subject><subject>FRICTION</subject><subject>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</subject><subject>LIQUIDS</subject><subject>MECHANICS</subject><subject>MOLECULAR STRUCTURE</subject><subject>MOLECULAR WEIGHT</subject><subject>ORGANIC COMPOUNDS</subject><subject>ORGANIC POLYMERS</subject><subject>PIPES</subject><subject>POLYMERS</subject><subject>QUANTITY RATIO</subject><subject>REYNOLDS NUMBER</subject><subject>RHEOLOGY</subject><subject>SHEAR</subject><subject>STIMULATION</subject><subject>STRESSES</subject><subject>TUBES</subject><subject>TURBULENT FLOW</subject><subject>VISCOSITY</subject><subject>WELL COMPLETION</subject><subject>WELL STIMULATION</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1971</creationdate><recordtype>article</recordtype><recordid>eNp9kLtPwzAQxi0EEqUwskfsKWc7ie2xVH2J8hhAjJbrnGkgTSo7FfS_x1BUMTHd63d3nz5CLikMKAC7NpUdFAqoAMbkEenRPBNpriA_Jj0AoGls0FNyFsJbrJiQrEduxs6h7ULSumTd1mi3tfGJXRlvbIe-Cl1lf4abtt6t0ce8SUpvXhOP5dZ2VduckxNn6oAXv7FPnifjp9EsXTxM56PhIrUZLWRqpTQIruSmWIIScplJKViJjiuQOUM0JVBa0FxKxgRQDtygk8oxFGrJBO-Tq_3dNorSwVYd2pVtmybq13kBXGUyQukesr4NwaPTG1-tjd9pCvrbJR1d0geXIi_2_EdV4-5_WA_no7-bv5-iR_h52DT-XReCi1y_3E_13Uyqx-J2ojn_AkqXeOI</recordid><startdate>197103</startdate><enddate>197103</enddate><creator>Liaw, Gin-Chain</creator><creator>Zakin, Jacques L.</creator><creator>Patterson, Gary K.</creator><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>197103</creationdate><title>Effects of molecular characteristics of polymers on drag reduction</title><author>Liaw, Gin-Chain ; Zakin, Jacques L. ; Patterson, Gary K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4168-c88ae0fd3a6b0978b48872def390852eead0116158822701303aef89f2e79b273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1971</creationdate><topic>02 PETROLEUM</topic><topic>020300 - Petroleum- Drilling &amp; Production</topic><topic>400301 - Organic Chemistry- Chemical &amp; Physicochemical Properties- (-1987)</topic><topic>ADDITIVES</topic><topic>CHEMICAL COMPOSITION</topic><topic>CORRELATIONS</topic><topic>DIMENSIONS</topic><topic>DRAG</topic><topic>FLUID FLOW</topic><topic>FLUID MECHANICS</topic><topic>FLUIDS</topic><topic>FRICTION</topic><topic>INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY</topic><topic>LIQUIDS</topic><topic>MECHANICS</topic><topic>MOLECULAR STRUCTURE</topic><topic>MOLECULAR WEIGHT</topic><topic>ORGANIC COMPOUNDS</topic><topic>ORGANIC POLYMERS</topic><topic>PIPES</topic><topic>POLYMERS</topic><topic>QUANTITY RATIO</topic><topic>REYNOLDS NUMBER</topic><topic>RHEOLOGY</topic><topic>SHEAR</topic><topic>STIMULATION</topic><topic>STRESSES</topic><topic>TUBES</topic><topic>TURBULENT FLOW</topic><topic>VISCOSITY</topic><topic>WELL COMPLETION</topic><topic>WELL STIMULATION</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liaw, Gin-Chain</creatorcontrib><creatorcontrib>Zakin, Jacques L.</creatorcontrib><creatorcontrib>Patterson, Gary K.</creatorcontrib><creatorcontrib>Missouri Univ</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>AIChE J.; (United States)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liaw, Gin-Chain</au><au>Zakin, Jacques L.</au><au>Patterson, Gary K.</au><aucorp>Missouri Univ</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of molecular characteristics of polymers on drag reduction</atitle><jtitle>AIChE J.; (United States)</jtitle><addtitle>AIChE J</addtitle><date>1971-03</date><risdate>1971</risdate><volume>17</volume><issue>2</issue><spage>391</spage><epage>397</epage><pages>391-397</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Turbulent measurements in capillary tubes and in pipes were made on nonpolar solutions of seven polymer species, three at more than one molecular weight, over wide concentration ranges. A critical concentration, Cc, was taken as the minimum concentration for disappearance of the turbulence transition region. Above this concentration, friction factor‐generalized Reynolds number data show only a gradual deviation from extension of the laminar line. Cc increases with tube diameter and decreases with molecular weight. The critical dimensionless volume friction Cc [η] is less dependent on molecular weight. The levels of Cc [η] for different polymer species in a given tube show marked differences which are related to β, the molecular rigidity parameter. Low β values, or high flexibility, are associated with low Cc [η] values. Available data for Cc [η] in good and in poor solvents show little solvency effect. Polymer samples of low m′, the ratio of the polymer molecular weight to the critical tanglement molecular weight of the polymer, give solutions with little or no drag‐reducing capacity, even those with low β values. Samples must have m′ values of 50 or more to show significant drag reduction. This allows prediction of the minimum useful molecular weights for drag reduction for any polymer species. For solutions above Cc, all of these data and literature data (for aqueous and nonaqueous systems with a wide range of n′ values) fit a single f/fpv versus generalized Reynolds number relationship.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690170228</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE J.; (United States), 1971-03, Vol.17 (2), p.391-397
issn 0001-1541
1547-5905
language eng
recordid cdi_crossref_primary_10_1002_aic_690170228
source Access via Wiley Online Library
subjects 02 PETROLEUM
020300 - Petroleum- Drilling & Production
400301 - Organic Chemistry- Chemical & Physicochemical Properties- (-1987)
ADDITIVES
CHEMICAL COMPOSITION
CORRELATIONS
DIMENSIONS
DRAG
FLUID FLOW
FLUID MECHANICS
FLUIDS
FRICTION
INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY
LIQUIDS
MECHANICS
MOLECULAR STRUCTURE
MOLECULAR WEIGHT
ORGANIC COMPOUNDS
ORGANIC POLYMERS
PIPES
POLYMERS
QUANTITY RATIO
REYNOLDS NUMBER
RHEOLOGY
SHEAR
STIMULATION
STRESSES
TUBES
TURBULENT FLOW
VISCOSITY
WELL COMPLETION
WELL STIMULATION
title Effects of molecular characteristics of polymers on drag reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A12%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20molecular%20characteristics%20of%20polymers%20on%20drag%20reduction&rft.jtitle=AIChE%20J.;%20(United%20States)&rft.au=Liaw,%20Gin-Chain&rft.aucorp=Missouri%20Univ&rft.date=1971-03&rft.volume=17&rft.issue=2&rft.spage=391&rft.epage=397&rft.pages=391-397&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.690170228&rft_dat=%3Cwiley_osti_%3EAIC690170228%3C/wiley_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true