The structuring of process optimization

The efficiency of process optimization by mathematical programming can be increased by tearing, that is, rearranging the design equations so as to reduce the number of equality constraints. The structure of a system of equations may be depicted as an undirected bipartite graph; algorithm I‐T utilize...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 1970-03, Vol.16 (2), p.177-184
1. Verfasser: Christensen, James H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184
container_issue 2
container_start_page 177
container_title AIChE journal
container_volume 16
creator Christensen, James H.
description The efficiency of process optimization by mathematical programming can be increased by tearing, that is, rearranging the design equations so as to reduce the number of equality constraints. The structure of a system of equations may be depicted as an undirected bipartite graph; algorithm I‐T utilizes this graph to determine an order of solution for the equations which requires no tears. If this is impossible, then algorithm II‐T uses indexing in conjunction with algorithm I‐T to produce an order which minimizes the number of torn equations. This procedure is extended to the problem of minimum recycle parameters, and the two‐way interaction between tearing and algebraic simplification is illustrated.
doi_str_mv 10.1002/aic.690160206
format Article
fullrecord <record><control><sourceid>istex_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aic_690160206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ark_67375_WNG_HLXWF2HF_3</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3236-646735fdb87a5151c1e1ebcdf20668fdcf3d2eb9910376c8498cda1c7d24bd9d3</originalsourceid><addsrcrecordid>eNp9jz1PwzAQhi0EEqEwsmdjSvHZsZ2MVUQ_pAiWorJZjj_A0DaRnQrKryeoVcXEdLrT897dg9At4DFgTO6V12NeYuCYYH6GEmC5yFiJ2TlKMMaQDQO4RFcxvg8dEQVJ0N3yzaaxDzvd74LfvqatS7vQahtj2na93_hv1ft2e40unFpHe3OsI_Q8fVhW86x-mi2qSZ1pSijPeM4FZc40hVAMGGiwYBtt3PARL5zRjhpim7IETAXXRV4W2ijQwpC8MaWhI5Qd9urQxhisk13wGxX2ErD8tZSDpTxZDrw48J9-bff_w3KyqP4mj5d87O3XKanChxwcBJOrx5mc1y-rKZlPJaU_lnFkfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The structuring of process optimization</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Christensen, James H.</creator><creatorcontrib>Christensen, James H.</creatorcontrib><description>The efficiency of process optimization by mathematical programming can be increased by tearing, that is, rearranging the design equations so as to reduce the number of equality constraints. The structure of a system of equations may be depicted as an undirected bipartite graph; algorithm I‐T utilizes this graph to determine an order of solution for the equations which requires no tears. If this is impossible, then algorithm II‐T uses indexing in conjunction with algorithm I‐T to produce an order which minimizes the number of torn equations. This procedure is extended to the problem of minimum recycle parameters, and the two‐way interaction between tearing and algebraic simplification is illustrated.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.690160206</identifier><language>eng</language><publisher>New York: American Institute of Chemical Engineers</publisher><ispartof>AIChE journal, 1970-03, Vol.16 (2), p.177-184</ispartof><rights>Copyright © 1970 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3236-646735fdb87a5151c1e1ebcdf20668fdcf3d2eb9910376c8498cda1c7d24bd9d3</citedby><cites>FETCH-LOGICAL-c3236-646735fdb87a5151c1e1ebcdf20668fdcf3d2eb9910376c8498cda1c7d24bd9d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faic.690160206$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faic.690160206$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Christensen, James H.</creatorcontrib><title>The structuring of process optimization</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The efficiency of process optimization by mathematical programming can be increased by tearing, that is, rearranging the design equations so as to reduce the number of equality constraints. The structure of a system of equations may be depicted as an undirected bipartite graph; algorithm I‐T utilizes this graph to determine an order of solution for the equations which requires no tears. If this is impossible, then algorithm II‐T uses indexing in conjunction with algorithm I‐T to produce an order which minimizes the number of torn equations. This procedure is extended to the problem of minimum recycle parameters, and the two‐way interaction between tearing and algebraic simplification is illustrated.</description><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1970</creationdate><recordtype>article</recordtype><recordid>eNp9jz1PwzAQhi0EEqEwsmdjSvHZsZ2MVUQ_pAiWorJZjj_A0DaRnQrKryeoVcXEdLrT897dg9At4DFgTO6V12NeYuCYYH6GEmC5yFiJ2TlKMMaQDQO4RFcxvg8dEQVJ0N3yzaaxDzvd74LfvqatS7vQahtj2na93_hv1ft2e40unFpHe3OsI_Q8fVhW86x-mi2qSZ1pSijPeM4FZc40hVAMGGiwYBtt3PARL5zRjhpim7IETAXXRV4W2ijQwpC8MaWhI5Qd9urQxhisk13wGxX2ErD8tZSDpTxZDrw48J9-bff_w3KyqP4mj5d87O3XKanChxwcBJOrx5mc1y-rKZlPJaU_lnFkfA</recordid><startdate>197003</startdate><enddate>197003</enddate><creator>Christensen, James H.</creator><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197003</creationdate><title>The structuring of process optimization</title><author>Christensen, James H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3236-646735fdb87a5151c1e1ebcdf20668fdcf3d2eb9910376c8498cda1c7d24bd9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1970</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christensen, James H.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christensen, James H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The structuring of process optimization</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>1970-03</date><risdate>1970</risdate><volume>16</volume><issue>2</issue><spage>177</spage><epage>184</epage><pages>177-184</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The efficiency of process optimization by mathematical programming can be increased by tearing, that is, rearranging the design equations so as to reduce the number of equality constraints. The structure of a system of equations may be depicted as an undirected bipartite graph; algorithm I‐T utilizes this graph to determine an order of solution for the equations which requires no tears. If this is impossible, then algorithm II‐T uses indexing in conjunction with algorithm I‐T to produce an order which minimizes the number of torn equations. This procedure is extended to the problem of minimum recycle parameters, and the two‐way interaction between tearing and algebraic simplification is illustrated.</abstract><cop>New York</cop><pub>American Institute of Chemical Engineers</pub><doi>10.1002/aic.690160206</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 1970-03, Vol.16 (2), p.177-184
issn 0001-1541
1547-5905
language eng
recordid cdi_crossref_primary_10_1002_aic_690160206
source Wiley Online Library Journals Frontfile Complete
title The structuring of process optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T20%3A28%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-istex_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20structuring%20of%20process%20optimization&rft.jtitle=AIChE%20journal&rft.au=Christensen,%20James%20H.&rft.date=1970-03&rft.volume=16&rft.issue=2&rft.spage=177&rft.epage=184&rft.pages=177-184&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.690160206&rft_dat=%3Cistex_cross%3Eark_67375_WNG_HLXWF2HF_3%3C/istex_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true