Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks
This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near...
Gespeichert in:
Veröffentlicht in: | AIChE journal 2025-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | AIChE journal |
container_volume | |
creator | Sharma, Swapnil Balakotaiah, Vemuri |
description | This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch. |
doi_str_mv | 10.1002/aic.18725 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aic_18725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aic_18725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-25f2ea3c50cd0c4db7cb50b8a822dcc583593fa2bb6e3931bf741a0d9ddd6d613</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqEw8AZeGVJ8qZtkrCqgSJVYYI5-34rBdcBOirLxCDwjT4IJTOeiozN8CF1SMqeEsGtwak7riokjVFCxqErREHGMCkIILXNBT9FZSi85sapmBfpYBfBjcgl3Fgfohwgeqy4cjOpdF7CxNruEXcChC9-fXwdQw7DPRkIyOvdp8DBNPYwmTj8e4s7kSVLgDfbufXAaP486djsTcA_hNZ2jEws-mYt_naGn25vH9abcPtzdr1fbUlHa9CUTlhngShCliVpoWSkpiKyhZkwrJWouGm6BSbk0vOFU2mpBgehGa73US8pn6OrvV8UupWhs-xbdHuLYUtL-EmszsXYixn8AZwJlGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sharma, Swapnil ; Balakotaiah, Vemuri</creator><creatorcontrib>Sharma, Swapnil ; Balakotaiah, Vemuri</creatorcontrib><description>This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18725</identifier><language>eng</language><ispartof>AIChE journal, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-25f2ea3c50cd0c4db7cb50b8a822dcc583593fa2bb6e3931bf741a0d9ddd6d613</cites><orcidid>0000-0002-9187-3901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sharma, Swapnil</creatorcontrib><creatorcontrib>Balakotaiah, Vemuri</creatorcontrib><title>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</title><title>AIChE journal</title><description>This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch.</description><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqEw8AZeGVJ8qZtkrCqgSJVYYI5-34rBdcBOirLxCDwjT4IJTOeiozN8CF1SMqeEsGtwak7riokjVFCxqErREHGMCkIILXNBT9FZSi85sapmBfpYBfBjcgl3Fgfohwgeqy4cjOpdF7CxNruEXcChC9-fXwdQw7DPRkIyOvdp8DBNPYwmTj8e4s7kSVLgDfbufXAaP486djsTcA_hNZ2jEws-mYt_naGn25vH9abcPtzdr1fbUlHa9CUTlhngShCliVpoWSkpiKyhZkwrJWouGm6BSbk0vOFU2mpBgehGa73US8pn6OrvV8UupWhs-xbdHuLYUtL-EmszsXYixn8AZwJlGA</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Sharma, Swapnil</creator><creator>Balakotaiah, Vemuri</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9187-3901</orcidid></search><sort><creationdate>20250103</creationdate><title>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</title><author>Sharma, Swapnil ; Balakotaiah, Vemuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-25f2ea3c50cd0c4db7cb50b8a822dcc583593fa2bb6e3931bf741a0d9ddd6d613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Swapnil</creatorcontrib><creatorcontrib>Balakotaiah, Vemuri</creatorcontrib><collection>CrossRef</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Swapnil</au><au>Balakotaiah, Vemuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</atitle><jtitle>AIChE journal</jtitle><date>2025-01-03</date><risdate>2025</risdate><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch.</abstract><doi>10.1002/aic.18725</doi><orcidid>https://orcid.org/0000-0002-9187-3901</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2025-01 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_crossref_primary_10_1002_aic_18725 |
source | Wiley Online Library Journals Frontfile Complete |
title | Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20natural%20convection%20effects%20in%20non%E2%80%90vacuum%E2%80%90based%20insulation%20layers%20of%20large%E2%80%90scale%20liquid%20hydrogen%20tanks&rft.jtitle=AIChE%20journal&rft.au=Sharma,%20Swapnil&rft.date=2025-01-03&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18725&rft_dat=%3Ccrossref%3E10_1002_aic_18725%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |