Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks

This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIChE journal 2025-01
Hauptverfasser: Sharma, Swapnil, Balakotaiah, Vemuri
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title AIChE journal
container_volume
creator Sharma, Swapnil
Balakotaiah, Vemuri
description This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch.
doi_str_mv 10.1002/aic.18725
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aic_18725</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aic_18725</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-25f2ea3c50cd0c4db7cb50b8a822dcc583593fa2bb6e3931bf741a0d9ddd6d613</originalsourceid><addsrcrecordid>eNotkLtOwzAYhS0EEqEw8AZeGVJ8qZtkrCqgSJVYYI5-34rBdcBOirLxCDwjT4IJTOeiozN8CF1SMqeEsGtwak7riokjVFCxqErREHGMCkIILXNBT9FZSi85sapmBfpYBfBjcgl3Fgfohwgeqy4cjOpdF7CxNruEXcChC9-fXwdQw7DPRkIyOvdp8DBNPYwmTj8e4s7kSVLgDfbufXAaP486djsTcA_hNZ2jEws-mYt_naGn25vH9abcPtzdr1fbUlHa9CUTlhngShCliVpoWSkpiKyhZkwrJWouGm6BSbk0vOFU2mpBgehGa73US8pn6OrvV8UupWhs-xbdHuLYUtL-EmszsXYixn8AZwJlGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sharma, Swapnil ; Balakotaiah, Vemuri</creator><creatorcontrib>Sharma, Swapnil ; Balakotaiah, Vemuri</creatorcontrib><description>This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.18725</identifier><language>eng</language><ispartof>AIChE journal, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c119t-25f2ea3c50cd0c4db7cb50b8a822dcc583593fa2bb6e3931bf741a0d9ddd6d613</cites><orcidid>0000-0002-9187-3901</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sharma, Swapnil</creatorcontrib><creatorcontrib>Balakotaiah, Vemuri</creatorcontrib><title>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</title><title>AIChE journal</title><description>This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch.</description><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNotkLtOwzAYhS0EEqEw8AZeGVJ8qZtkrCqgSJVYYI5-34rBdcBOirLxCDwjT4IJTOeiozN8CF1SMqeEsGtwak7riokjVFCxqErREHGMCkIILXNBT9FZSi85sapmBfpYBfBjcgl3Fgfohwgeqy4cjOpdF7CxNruEXcChC9-fXwdQw7DPRkIyOvdp8DBNPYwmTj8e4s7kSVLgDfbufXAaP486djsTcA_hNZ2jEws-mYt_naGn25vH9abcPtzdr1fbUlHa9CUTlhngShCliVpoWSkpiKyhZkwrJWouGm6BSbk0vOFU2mpBgehGa73US8pn6OrvV8UupWhs-xbdHuLYUtL-EmszsXYixn8AZwJlGA</recordid><startdate>20250103</startdate><enddate>20250103</enddate><creator>Sharma, Swapnil</creator><creator>Balakotaiah, Vemuri</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9187-3901</orcidid></search><sort><creationdate>20250103</creationdate><title>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</title><author>Sharma, Swapnil ; Balakotaiah, Vemuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-25f2ea3c50cd0c4db7cb50b8a822dcc583593fa2bb6e3931bf741a0d9ddd6d613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Swapnil</creatorcontrib><creatorcontrib>Balakotaiah, Vemuri</creatorcontrib><collection>CrossRef</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Swapnil</au><au>Balakotaiah, Vemuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks</atitle><jtitle>AIChE journal</jtitle><date>2025-01-03</date><risdate>2025</risdate><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>This work examines natural convection effects in the non‐vacuum‐based dual insulation layers of liquid hydrogen storage tanks. Specifically, we consider a dual‐layer insulation system in which the inner layer (near the cold boundary) is a hydrogen‐filled porous material, while the outer layer (near the warm boundary) is a nitrogen‐filled porous medium. We use linear instability theory to determine the critical Rayleigh number for the onset of convective motions, accounting for full physical property variation. We show that the highly unstable density stratification can lead to sub‐critical bifurcations and the co‐existence of conduction and convective states. We present computed bifurcation diagrams, along with flow patterns and temperature profiles of the emerging convective states. Due to sub‐critical bifurcations, in order to avoid convective motions and minimize the boil‐off rate, the insulation needs to be designed such that the Rayleigh number is below the limit point of the convective branch.</abstract><doi>10.1002/aic.18725</doi><orcidid>https://orcid.org/0000-0002-9187-3901</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2025-01
issn 0001-1541
1547-5905
language eng
recordid cdi_crossref_primary_10_1002_aic_18725
source Wiley Online Library Journals Frontfile Complete
title Analysis of natural convection effects in non‐vacuum‐based insulation layers of large‐scale liquid hydrogen tanks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T21%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20natural%20convection%20effects%20in%20non%E2%80%90vacuum%E2%80%90based%20insulation%20layers%20of%20large%E2%80%90scale%20liquid%20hydrogen%20tanks&rft.jtitle=AIChE%20journal&rft.au=Sharma,%20Swapnil&rft.date=2025-01-03&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.18725&rft_dat=%3Ccrossref%3E10_1002_aic_18725%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true