A regional analysis model of maize kernel moisture

With the popularization of late‐maturing and high‐yielding maize (Zea mays L.) hybrids, high kernel moisture concentration at the usual harvest time has resulted in increased kernel breakage and additional drying costs. To achieve low kernel moisture at harvest in China's maize‐growing areas, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agronomy journal 2021-03, Vol.113 (2), p.1467-1479
Hauptverfasser: Li, Lulu, Ming, Bo, Gao, Shang, Wang, Keru, Hou, Peng, Jin, Xiuliang, Chu, Zhendong, Zhang, Wanxu, Huang, Zhaofu, Li, Hongyan, Zhou, Xianlin, Bai, Shijie, Zhang, Zhentao, Xie, Ruizhi, Li, Shaokun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1479
container_issue 2
container_start_page 1467
container_title Agronomy journal
container_volume 113
creator Li, Lulu
Ming, Bo
Gao, Shang
Wang, Keru
Hou, Peng
Jin, Xiuliang
Chu, Zhendong
Zhang, Wanxu
Huang, Zhaofu
Li, Hongyan
Zhou, Xianlin
Bai, Shijie
Zhang, Zhentao
Xie, Ruizhi
Li, Shaokun
description With the popularization of late‐maturing and high‐yielding maize (Zea mays L.) hybrids, high kernel moisture concentration at the usual harvest time has resulted in increased kernel breakage and additional drying costs. To achieve low kernel moisture at harvest in China's maize‐growing areas, there is a need for the selection of fast dry‐down hybrids and the prediction of the ideal harvest time. During 2014–2017, the time‐series kernel moisture concentrations of three maize hybrids were measured in the field in three major maize‐producing regions in China. Our goal was to accurately predict maize kernel dry‐down in the field. We found that the Logistic Power model M = 90/[1 + (T/a)b] could be used to accurately predict the entire dry‐down process of maize kernels across hybrids and regions (concordance correlation coefficient, 0.884–0.996; RMSE, 2.76–5.16%; R2, .943–.986; and coefficient of residual mass, −0.09–0.14), where M is the kernel moisture concentration (wet basis), a and b are parameters that reflect the dry‐down characteristics of the hybrids, and T is the thermal time (°C d) from silking based on mean daily temperature over the periods of grain‐filling and grain‐drying. This work provides a new and convenient model for predicting kernel moisture concentration and evaluating the dry‐down characteristics of hybrids using parameters a and b.
doi_str_mv 10.1002/agj2.20532
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_agj2_20532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AGJ220532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2732-c08b5da1f19a1c577dbb5c51da4768a089366f92781ec24263a435f1cc3d01f03</originalsourceid><addsrcrecordid>eNp9j8FOwzAMhiMEEmVw4QlyRuqwnSZtj9UEAzSJC5yjNE2mjHZFCQiNp6ejnLnYsv7Plj_GrhGWCEC3ZrujJYEUdMIyLITMQRXylGUwpTnWis7ZRUo7AMS6wIxRw6PbhnFvem6mckgh8WHsXM9HzwcTvh1_c3E_zcMY0sdndJfszJs-uau_vmCv93cvq4d887x-XDWb3FIpKLdQtbIz6LE2aGVZdm0rrcTOFKWqDFS1UMrXVFboLBWkhJn-9Wit6AA9iAW7me_aOKYUndfvMQwmHjSCPtrqo63-tZ1gnOGv0LvDP6Ru1k807_wA7jJVdw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A regional analysis model of maize kernel moisture</title><source>Access via Wiley Online Library</source><creator>Li, Lulu ; Ming, Bo ; Gao, Shang ; Wang, Keru ; Hou, Peng ; Jin, Xiuliang ; Chu, Zhendong ; Zhang, Wanxu ; Huang, Zhaofu ; Li, Hongyan ; Zhou, Xianlin ; Bai, Shijie ; Zhang, Zhentao ; Xie, Ruizhi ; Li, Shaokun</creator><creatorcontrib>Li, Lulu ; Ming, Bo ; Gao, Shang ; Wang, Keru ; Hou, Peng ; Jin, Xiuliang ; Chu, Zhendong ; Zhang, Wanxu ; Huang, Zhaofu ; Li, Hongyan ; Zhou, Xianlin ; Bai, Shijie ; Zhang, Zhentao ; Xie, Ruizhi ; Li, Shaokun</creatorcontrib><description>With the popularization of late‐maturing and high‐yielding maize (Zea mays L.) hybrids, high kernel moisture concentration at the usual harvest time has resulted in increased kernel breakage and additional drying costs. To achieve low kernel moisture at harvest in China's maize‐growing areas, there is a need for the selection of fast dry‐down hybrids and the prediction of the ideal harvest time. During 2014–2017, the time‐series kernel moisture concentrations of three maize hybrids were measured in the field in three major maize‐producing regions in China. Our goal was to accurately predict maize kernel dry‐down in the field. We found that the Logistic Power model M = 90/[1 + (T/a)b] could be used to accurately predict the entire dry‐down process of maize kernels across hybrids and regions (concordance correlation coefficient, 0.884–0.996; RMSE, 2.76–5.16%; R2, .943–.986; and coefficient of residual mass, −0.09–0.14), where M is the kernel moisture concentration (wet basis), a and b are parameters that reflect the dry‐down characteristics of the hybrids, and T is the thermal time (°C d) from silking based on mean daily temperature over the periods of grain‐filling and grain‐drying. This work provides a new and convenient model for predicting kernel moisture concentration and evaluating the dry‐down characteristics of hybrids using parameters a and b.</description><identifier>ISSN: 0002-1962</identifier><identifier>EISSN: 1435-0645</identifier><identifier>DOI: 10.1002/agj2.20532</identifier><language>eng</language><ispartof>Agronomy journal, 2021-03, Vol.113 (2), p.1467-1479</ispartof><rights>2020 The Authors. Agronomy Journal © 2020 American Society of Agronomy</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2732-c08b5da1f19a1c577dbb5c51da4768a089366f92781ec24263a435f1cc3d01f03</citedby><cites>FETCH-LOGICAL-c2732-c08b5da1f19a1c577dbb5c51da4768a089366f92781ec24263a435f1cc3d01f03</cites><orcidid>0000-0002-8891-8515 ; 0000-0001-5560-3317 ; 0000-0002-1592-1473 ; 0000-0002-5384-8617 ; 0000-0002-9942-4123</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fagj2.20532$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fagj2.20532$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Ming, Bo</creatorcontrib><creatorcontrib>Gao, Shang</creatorcontrib><creatorcontrib>Wang, Keru</creatorcontrib><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Jin, Xiuliang</creatorcontrib><creatorcontrib>Chu, Zhendong</creatorcontrib><creatorcontrib>Zhang, Wanxu</creatorcontrib><creatorcontrib>Huang, Zhaofu</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Zhou, Xianlin</creatorcontrib><creatorcontrib>Bai, Shijie</creatorcontrib><creatorcontrib>Zhang, Zhentao</creatorcontrib><creatorcontrib>Xie, Ruizhi</creatorcontrib><creatorcontrib>Li, Shaokun</creatorcontrib><title>A regional analysis model of maize kernel moisture</title><title>Agronomy journal</title><description>With the popularization of late‐maturing and high‐yielding maize (Zea mays L.) hybrids, high kernel moisture concentration at the usual harvest time has resulted in increased kernel breakage and additional drying costs. To achieve low kernel moisture at harvest in China's maize‐growing areas, there is a need for the selection of fast dry‐down hybrids and the prediction of the ideal harvest time. During 2014–2017, the time‐series kernel moisture concentrations of three maize hybrids were measured in the field in three major maize‐producing regions in China. Our goal was to accurately predict maize kernel dry‐down in the field. We found that the Logistic Power model M = 90/[1 + (T/a)b] could be used to accurately predict the entire dry‐down process of maize kernels across hybrids and regions (concordance correlation coefficient, 0.884–0.996; RMSE, 2.76–5.16%; R2, .943–.986; and coefficient of residual mass, −0.09–0.14), where M is the kernel moisture concentration (wet basis), a and b are parameters that reflect the dry‐down characteristics of the hybrids, and T is the thermal time (°C d) from silking based on mean daily temperature over the periods of grain‐filling and grain‐drying. This work provides a new and convenient model for predicting kernel moisture concentration and evaluating the dry‐down characteristics of hybrids using parameters a and b.</description><issn>0002-1962</issn><issn>1435-0645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9j8FOwzAMhiMEEmVw4QlyRuqwnSZtj9UEAzSJC5yjNE2mjHZFCQiNp6ejnLnYsv7Plj_GrhGWCEC3ZrujJYEUdMIyLITMQRXylGUwpTnWis7ZRUo7AMS6wIxRw6PbhnFvem6mckgh8WHsXM9HzwcTvh1_c3E_zcMY0sdndJfszJs-uau_vmCv93cvq4d887x-XDWb3FIpKLdQtbIz6LE2aGVZdm0rrcTOFKWqDFS1UMrXVFboLBWkhJn-9Wit6AA9iAW7me_aOKYUndfvMQwmHjSCPtrqo63-tZ1gnOGv0LvDP6Ru1k807_wA7jJVdw</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Li, Lulu</creator><creator>Ming, Bo</creator><creator>Gao, Shang</creator><creator>Wang, Keru</creator><creator>Hou, Peng</creator><creator>Jin, Xiuliang</creator><creator>Chu, Zhendong</creator><creator>Zhang, Wanxu</creator><creator>Huang, Zhaofu</creator><creator>Li, Hongyan</creator><creator>Zhou, Xianlin</creator><creator>Bai, Shijie</creator><creator>Zhang, Zhentao</creator><creator>Xie, Ruizhi</creator><creator>Li, Shaokun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8891-8515</orcidid><orcidid>https://orcid.org/0000-0001-5560-3317</orcidid><orcidid>https://orcid.org/0000-0002-1592-1473</orcidid><orcidid>https://orcid.org/0000-0002-5384-8617</orcidid><orcidid>https://orcid.org/0000-0002-9942-4123</orcidid></search><sort><creationdate>202103</creationdate><title>A regional analysis model of maize kernel moisture</title><author>Li, Lulu ; Ming, Bo ; Gao, Shang ; Wang, Keru ; Hou, Peng ; Jin, Xiuliang ; Chu, Zhendong ; Zhang, Wanxu ; Huang, Zhaofu ; Li, Hongyan ; Zhou, Xianlin ; Bai, Shijie ; Zhang, Zhentao ; Xie, Ruizhi ; Li, Shaokun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2732-c08b5da1f19a1c577dbb5c51da4768a089366f92781ec24263a435f1cc3d01f03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Lulu</creatorcontrib><creatorcontrib>Ming, Bo</creatorcontrib><creatorcontrib>Gao, Shang</creatorcontrib><creatorcontrib>Wang, Keru</creatorcontrib><creatorcontrib>Hou, Peng</creatorcontrib><creatorcontrib>Jin, Xiuliang</creatorcontrib><creatorcontrib>Chu, Zhendong</creatorcontrib><creatorcontrib>Zhang, Wanxu</creatorcontrib><creatorcontrib>Huang, Zhaofu</creatorcontrib><creatorcontrib>Li, Hongyan</creatorcontrib><creatorcontrib>Zhou, Xianlin</creatorcontrib><creatorcontrib>Bai, Shijie</creatorcontrib><creatorcontrib>Zhang, Zhentao</creatorcontrib><creatorcontrib>Xie, Ruizhi</creatorcontrib><creatorcontrib>Li, Shaokun</creatorcontrib><collection>CrossRef</collection><jtitle>Agronomy journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Lulu</au><au>Ming, Bo</au><au>Gao, Shang</au><au>Wang, Keru</au><au>Hou, Peng</au><au>Jin, Xiuliang</au><au>Chu, Zhendong</au><au>Zhang, Wanxu</au><au>Huang, Zhaofu</au><au>Li, Hongyan</au><au>Zhou, Xianlin</au><au>Bai, Shijie</au><au>Zhang, Zhentao</au><au>Xie, Ruizhi</au><au>Li, Shaokun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A regional analysis model of maize kernel moisture</atitle><jtitle>Agronomy journal</jtitle><date>2021-03</date><risdate>2021</risdate><volume>113</volume><issue>2</issue><spage>1467</spage><epage>1479</epage><pages>1467-1479</pages><issn>0002-1962</issn><eissn>1435-0645</eissn><abstract>With the popularization of late‐maturing and high‐yielding maize (Zea mays L.) hybrids, high kernel moisture concentration at the usual harvest time has resulted in increased kernel breakage and additional drying costs. To achieve low kernel moisture at harvest in China's maize‐growing areas, there is a need for the selection of fast dry‐down hybrids and the prediction of the ideal harvest time. During 2014–2017, the time‐series kernel moisture concentrations of three maize hybrids were measured in the field in three major maize‐producing regions in China. Our goal was to accurately predict maize kernel dry‐down in the field. We found that the Logistic Power model M = 90/[1 + (T/a)b] could be used to accurately predict the entire dry‐down process of maize kernels across hybrids and regions (concordance correlation coefficient, 0.884–0.996; RMSE, 2.76–5.16%; R2, .943–.986; and coefficient of residual mass, −0.09–0.14), where M is the kernel moisture concentration (wet basis), a and b are parameters that reflect the dry‐down characteristics of the hybrids, and T is the thermal time (°C d) from silking based on mean daily temperature over the periods of grain‐filling and grain‐drying. This work provides a new and convenient model for predicting kernel moisture concentration and evaluating the dry‐down characteristics of hybrids using parameters a and b.</abstract><doi>10.1002/agj2.20532</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-8891-8515</orcidid><orcidid>https://orcid.org/0000-0001-5560-3317</orcidid><orcidid>https://orcid.org/0000-0002-1592-1473</orcidid><orcidid>https://orcid.org/0000-0002-5384-8617</orcidid><orcidid>https://orcid.org/0000-0002-9942-4123</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-1962
ispartof Agronomy journal, 2021-03, Vol.113 (2), p.1467-1479
issn 0002-1962
1435-0645
language eng
recordid cdi_crossref_primary_10_1002_agj2_20532
source Access via Wiley Online Library
title A regional analysis model of maize kernel moisture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20regional%20analysis%20model%20of%20maize%20kernel%20moisture&rft.jtitle=Agronomy%20journal&rft.au=Li,%20Lulu&rft.date=2021-03&rft.volume=113&rft.issue=2&rft.spage=1467&rft.epage=1479&rft.pages=1467-1479&rft.issn=0002-1962&rft.eissn=1435-0645&rft_id=info:doi/10.1002/agj2.20532&rft_dat=%3Cwiley_cross%3EAGJ220532%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true