Conversion–Lithiophilicity Hosts Toward Long‐Term and High‐Energy‐Density Lithium Metal Batteries

Lithium metal anode emerges as an ideal candidate for the next generation of high‐energy‐density batteries. However, challenges persist in achieving high lithium utilization rates while maintaining the demands of high energy density and extended cycle life. In this work, a novel conversion–lithiophi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2025-01
Hauptverfasser: Huang, Aoming, Huang, Hongjiao, Li, Shaoxiong, Pan, Xiansong, Wang, Ai‐Yin, Chen, Han‐Yi, Wang, Tao, Li, Linlin, Maximov, Maxim, Ren, Jianwei, Wu, Yuping, Peng, Shengjie
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advanced energy materials
container_volume
creator Huang, Aoming
Huang, Hongjiao
Li, Shaoxiong
Pan, Xiansong
Wang, Ai‐Yin
Chen, Han‐Yi
Wang, Tao
Li, Linlin
Maximov, Maxim
Ren, Jianwei
Wu, Yuping
Peng, Shengjie
description Lithium metal anode emerges as an ideal candidate for the next generation of high‐energy‐density batteries. However, challenges persist in achieving high lithium utilization rates while maintaining the demands of high energy density and extended cycle life. In this work, a novel conversion–lithiophilicity strategy is proposed to regulate the longevity of high‐energy‐density batteries by injecting lithium ion activity. This strategy is validated through carbon nanofiber decorated with Fe 3 C and Fe 2 O 3 particles. The uniform metallic lithium deposition induced by lithiophilic Fe 3 C substrates has been verified through lithium deposition/stripping experiments and density functional theory calculations. The electrochemical active Fe 2 O 3 component supplies additional anodic capacity and suppress battery degradation, as demonstrated in lithium‐ion storage research and three electrode system studies. When paired with LiFePO 4 cathodes at an N/P ratio of 2, the full battery showcases outstanding cycling stability over 300 cycles at 1C, with an exceptional energy density of 438 Wh kg −1 (calculated based on the cathode material and lithium content). Furthermore, the full battery delivers rapid kinetics of 124 mAh g −1 at 2C. The conversion–lithiophilicity strategy presented offers a promising avenue for the development of high‐energy density and long‐life lithium metal batteries.
doi_str_mv 10.1002/aenm.202403576
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aenm_202403576</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aenm_202403576</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_aenm_2024035763</originalsourceid><addsrcrecordid>eNqVj7FOw0AQRE8IJCJIS30_ELPnMwZaQpCL0Lk_nZKNvci-i3YPkLt8AhJ_mC_BRig908xMMSM9pW4MZAYgv_UY-iyHvAB7d1-eqZkpTbEoHwo4P2WbX6q5yBuMKh4NWDtTtIzhA1kohuPhe02ppbhvqaMNpUFXUZLoOn563up1DM3x8FUj99qHra6oace-CsjNMIZnDDKNfk_ee_2KyXf6yaeETCjX6mLnO8H5n1-p7GVVL6vFhqMI487tmXrPgzPgJiY3MbkTk_334Ad7Xlnf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conversion–Lithiophilicity Hosts Toward Long‐Term and High‐Energy‐Density Lithium Metal Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Aoming ; Huang, Hongjiao ; Li, Shaoxiong ; Pan, Xiansong ; Wang, Ai‐Yin ; Chen, Han‐Yi ; Wang, Tao ; Li, Linlin ; Maximov, Maxim ; Ren, Jianwei ; Wu, Yuping ; Peng, Shengjie</creator><creatorcontrib>Huang, Aoming ; Huang, Hongjiao ; Li, Shaoxiong ; Pan, Xiansong ; Wang, Ai‐Yin ; Chen, Han‐Yi ; Wang, Tao ; Li, Linlin ; Maximov, Maxim ; Ren, Jianwei ; Wu, Yuping ; Peng, Shengjie</creatorcontrib><description>Lithium metal anode emerges as an ideal candidate for the next generation of high‐energy‐density batteries. However, challenges persist in achieving high lithium utilization rates while maintaining the demands of high energy density and extended cycle life. In this work, a novel conversion–lithiophilicity strategy is proposed to regulate the longevity of high‐energy‐density batteries by injecting lithium ion activity. This strategy is validated through carbon nanofiber decorated with Fe 3 C and Fe 2 O 3 particles. The uniform metallic lithium deposition induced by lithiophilic Fe 3 C substrates has been verified through lithium deposition/stripping experiments and density functional theory calculations. The electrochemical active Fe 2 O 3 component supplies additional anodic capacity and suppress battery degradation, as demonstrated in lithium‐ion storage research and three electrode system studies. When paired with LiFePO 4 cathodes at an N/P ratio of 2, the full battery showcases outstanding cycling stability over 300 cycles at 1C, with an exceptional energy density of 438 Wh kg −1 (calculated based on the cathode material and lithium content). Furthermore, the full battery delivers rapid kinetics of 124 mAh g −1 at 2C. The conversion–lithiophilicity strategy presented offers a promising avenue for the development of high‐energy density and long‐life lithium metal batteries.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202403576</identifier><language>eng</language><ispartof>Advanced energy materials, 2025-01</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_aenm_2024035763</cites><orcidid>0000-0003-1591-1301 ; 0009-0004-1394-3718</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Huang, Aoming</creatorcontrib><creatorcontrib>Huang, Hongjiao</creatorcontrib><creatorcontrib>Li, Shaoxiong</creatorcontrib><creatorcontrib>Pan, Xiansong</creatorcontrib><creatorcontrib>Wang, Ai‐Yin</creatorcontrib><creatorcontrib>Chen, Han‐Yi</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>Maximov, Maxim</creatorcontrib><creatorcontrib>Ren, Jianwei</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><title>Conversion–Lithiophilicity Hosts Toward Long‐Term and High‐Energy‐Density Lithium Metal Batteries</title><title>Advanced energy materials</title><description>Lithium metal anode emerges as an ideal candidate for the next generation of high‐energy‐density batteries. However, challenges persist in achieving high lithium utilization rates while maintaining the demands of high energy density and extended cycle life. In this work, a novel conversion–lithiophilicity strategy is proposed to regulate the longevity of high‐energy‐density batteries by injecting lithium ion activity. This strategy is validated through carbon nanofiber decorated with Fe 3 C and Fe 2 O 3 particles. The uniform metallic lithium deposition induced by lithiophilic Fe 3 C substrates has been verified through lithium deposition/stripping experiments and density functional theory calculations. The electrochemical active Fe 2 O 3 component supplies additional anodic capacity and suppress battery degradation, as demonstrated in lithium‐ion storage research and three electrode system studies. When paired with LiFePO 4 cathodes at an N/P ratio of 2, the full battery showcases outstanding cycling stability over 300 cycles at 1C, with an exceptional energy density of 438 Wh kg −1 (calculated based on the cathode material and lithium content). Furthermore, the full battery delivers rapid kinetics of 124 mAh g −1 at 2C. The conversion–lithiophilicity strategy presented offers a promising avenue for the development of high‐energy density and long‐life lithium metal batteries.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><recordid>eNqVj7FOw0AQRE8IJCJIS30_ELPnMwZaQpCL0Lk_nZKNvci-i3YPkLt8AhJ_mC_BRig908xMMSM9pW4MZAYgv_UY-iyHvAB7d1-eqZkpTbEoHwo4P2WbX6q5yBuMKh4NWDtTtIzhA1kohuPhe02ppbhvqaMNpUFXUZLoOn563up1DM3x8FUj99qHra6oace-CsjNMIZnDDKNfk_ee_2KyXf6yaeETCjX6mLnO8H5n1-p7GVVL6vFhqMI487tmXrPgzPgJiY3MbkTk_334Ad7Xlnf</recordid><startdate>20250120</startdate><enddate>20250120</enddate><creator>Huang, Aoming</creator><creator>Huang, Hongjiao</creator><creator>Li, Shaoxiong</creator><creator>Pan, Xiansong</creator><creator>Wang, Ai‐Yin</creator><creator>Chen, Han‐Yi</creator><creator>Wang, Tao</creator><creator>Li, Linlin</creator><creator>Maximov, Maxim</creator><creator>Ren, Jianwei</creator><creator>Wu, Yuping</creator><creator>Peng, Shengjie</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1591-1301</orcidid><orcidid>https://orcid.org/0009-0004-1394-3718</orcidid></search><sort><creationdate>20250120</creationdate><title>Conversion–Lithiophilicity Hosts Toward Long‐Term and High‐Energy‐Density Lithium Metal Batteries</title><author>Huang, Aoming ; Huang, Hongjiao ; Li, Shaoxiong ; Pan, Xiansong ; Wang, Ai‐Yin ; Chen, Han‐Yi ; Wang, Tao ; Li, Linlin ; Maximov, Maxim ; Ren, Jianwei ; Wu, Yuping ; Peng, Shengjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_aenm_2024035763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Aoming</creatorcontrib><creatorcontrib>Huang, Hongjiao</creatorcontrib><creatorcontrib>Li, Shaoxiong</creatorcontrib><creatorcontrib>Pan, Xiansong</creatorcontrib><creatorcontrib>Wang, Ai‐Yin</creatorcontrib><creatorcontrib>Chen, Han‐Yi</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Li, Linlin</creatorcontrib><creatorcontrib>Maximov, Maxim</creatorcontrib><creatorcontrib>Ren, Jianwei</creatorcontrib><creatorcontrib>Wu, Yuping</creatorcontrib><creatorcontrib>Peng, Shengjie</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Aoming</au><au>Huang, Hongjiao</au><au>Li, Shaoxiong</au><au>Pan, Xiansong</au><au>Wang, Ai‐Yin</au><au>Chen, Han‐Yi</au><au>Wang, Tao</au><au>Li, Linlin</au><au>Maximov, Maxim</au><au>Ren, Jianwei</au><au>Wu, Yuping</au><au>Peng, Shengjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conversion–Lithiophilicity Hosts Toward Long‐Term and High‐Energy‐Density Lithium Metal Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2025-01-20</date><risdate>2025</risdate><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Lithium metal anode emerges as an ideal candidate for the next generation of high‐energy‐density batteries. However, challenges persist in achieving high lithium utilization rates while maintaining the demands of high energy density and extended cycle life. In this work, a novel conversion–lithiophilicity strategy is proposed to regulate the longevity of high‐energy‐density batteries by injecting lithium ion activity. This strategy is validated through carbon nanofiber decorated with Fe 3 C and Fe 2 O 3 particles. The uniform metallic lithium deposition induced by lithiophilic Fe 3 C substrates has been verified through lithium deposition/stripping experiments and density functional theory calculations. The electrochemical active Fe 2 O 3 component supplies additional anodic capacity and suppress battery degradation, as demonstrated in lithium‐ion storage research and three electrode system studies. When paired with LiFePO 4 cathodes at an N/P ratio of 2, the full battery showcases outstanding cycling stability over 300 cycles at 1C, with an exceptional energy density of 438 Wh kg −1 (calculated based on the cathode material and lithium content). Furthermore, the full battery delivers rapid kinetics of 124 mAh g −1 at 2C. The conversion–lithiophilicity strategy presented offers a promising avenue for the development of high‐energy density and long‐life lithium metal batteries.</abstract><doi>10.1002/aenm.202403576</doi><orcidid>https://orcid.org/0000-0003-1591-1301</orcidid><orcidid>https://orcid.org/0009-0004-1394-3718</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2025-01
issn 1614-6832
1614-6840
language eng
recordid cdi_crossref_primary_10_1002_aenm_202403576
source Wiley Online Library Journals Frontfile Complete
title Conversion–Lithiophilicity Hosts Toward Long‐Term and High‐Energy‐Density Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conversion%E2%80%93Lithiophilicity%20Hosts%20Toward%20Long%E2%80%90Term%20and%20High%E2%80%90Energy%E2%80%90Density%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Huang,%20Aoming&rft.date=2025-01-20&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202403576&rft_dat=%3Ccrossref%3E10_1002_aenm_202403576%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true