8.5  µ m‐Thick Flexible‐Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air‐Stable and Interface‐Compatible All‐Solid‐State Lithium Metal Batteries

All‐solid‐state lithium batteries (ASSLBs), as the next‐generation energy storage system, potentially bridge the gap between high energy density and operational safety. However, the application of ASSLBs is technically handicapped by the extremely weak interfacial contact and dendrite growth that is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2022-06, Vol.12 (24)
Hauptverfasser: Zhang, Kun, Wu, Feng, Wang, Xinran, Weng, Suting, Yang, Xiaoyu, Zhao, Huichun, Guo, Ruiqi, Sun, Yuheng, Zhao, Wenbin, Song, Tinglu, Wang, Xuefeng, Bai, Ying, Wu, Chuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 24
container_start_page
container_title Advanced energy materials
container_volume 12
creator Zhang, Kun
Wu, Feng
Wang, Xinran
Weng, Suting
Yang, Xiaoyu
Zhao, Huichun
Guo, Ruiqi
Sun, Yuheng
Zhao, Wenbin
Song, Tinglu
Wang, Xuefeng
Bai, Ying
Wu, Chuan
description All‐solid‐state lithium batteries (ASSLBs), as the next‐generation energy storage system, potentially bridge the gap between high energy density and operational safety. However, the application of ASSLBs is technically handicapped by the extremely weak interfacial contact and dendrite growth that is prone to unstabilize solid electrolyte interphase (SEI) with limited electrochemical performance. In this contribution, air‐stable and interface‐compatible solid electrolyte/lithium integration is proposed by in situ copolymerization of poly(ethylene glycol methacrylate)‐Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ‐lithium (PEGMA‐LAGP‐Li). The first‐of‐this‐kind hierarchy provides a promising synergy of flexibility‐rigidity (Young's modulus 3 GPa), high ionic conductivity (2.37  ×  10 −4  S cm −1 ), high lithium‐ion transfer number ( t Li+  =  0.87), and LiF‐rich SEI, all contributing to homogenized lithium‐ion flux, significantly prolonged cycle stability ( > 3500 h) and obvious dendrite suppression for high‐performance ASSLBs. Furthermore, the integration protects lithium from air corrosion, providing insights into a novel interface‐enhancement paradigm and realizing the first ASSLBs assembly in ambient conditions without any loss of specific capacity.
doi_str_mv 10.1002/aenm.202200368
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aenm_202200368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aenm_202200368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c169t-22b72187d3c5fb23f4dfed35c039e4096b59d35a82c84ba43004ec3017e0d82b3</originalsourceid><addsrcrecordid>eNo9kM1OwkAUhSdGEwmydT0v0DI_bWmXSEBIMCaC62Y6vYXRaUumYyI7HoHEF3Dt3hfgUXgSp6Lczf0751schG4p8SkhrC-gKn1GGCOER_EF6tCIBl4UB-TyPHN2jXpN80JcBQklnHfQV-yHh098-MblcbdfrpV8xRMN7yrT4A5PaqVyPN1mxrVFrVV-3H2MNUhrar210J8ru1ZvJZ5VFlZGWFVXuKgNHirj7AsrHAeLKv8VmELIljqqy42Ttq-h1q3uRG71FvA_8wGs0PhOWOdU0Nygq0LoBnp_vYueJ-PlaOrNH-9no-HckzRKrMdYNmA0HuRchkXGeBHkBeQ8lIQnEJAkysLErSJmMg4yEXAXBkhO6ABIHrOMd5F_4kpTN42BIt0YVQqzTSlJ27DTNuz0HDb_AYpPfQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>8.5  µ m‐Thick Flexible‐Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air‐Stable and Interface‐Compatible All‐Solid‐State Lithium Metal Batteries</title><source>Access via Wiley Online Library</source><creator>Zhang, Kun ; Wu, Feng ; Wang, Xinran ; Weng, Suting ; Yang, Xiaoyu ; Zhao, Huichun ; Guo, Ruiqi ; Sun, Yuheng ; Zhao, Wenbin ; Song, Tinglu ; Wang, Xuefeng ; Bai, Ying ; Wu, Chuan</creator><creatorcontrib>Zhang, Kun ; Wu, Feng ; Wang, Xinran ; Weng, Suting ; Yang, Xiaoyu ; Zhao, Huichun ; Guo, Ruiqi ; Sun, Yuheng ; Zhao, Wenbin ; Song, Tinglu ; Wang, Xuefeng ; Bai, Ying ; Wu, Chuan</creatorcontrib><description>All‐solid‐state lithium batteries (ASSLBs), as the next‐generation energy storage system, potentially bridge the gap between high energy density and operational safety. However, the application of ASSLBs is technically handicapped by the extremely weak interfacial contact and dendrite growth that is prone to unstabilize solid electrolyte interphase (SEI) with limited electrochemical performance. In this contribution, air‐stable and interface‐compatible solid electrolyte/lithium integration is proposed by in situ copolymerization of poly(ethylene glycol methacrylate)‐Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ‐lithium (PEGMA‐LAGP‐Li). The first‐of‐this‐kind hierarchy provides a promising synergy of flexibility‐rigidity (Young's modulus 3 GPa), high ionic conductivity (2.37  ×  10 −4  S cm −1 ), high lithium‐ion transfer number ( t Li+  =  0.87), and LiF‐rich SEI, all contributing to homogenized lithium‐ion flux, significantly prolonged cycle stability ( &gt; 3500 h) and obvious dendrite suppression for high‐performance ASSLBs. Furthermore, the integration protects lithium from air corrosion, providing insights into a novel interface‐enhancement paradigm and realizing the first ASSLBs assembly in ambient conditions without any loss of specific capacity.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.202200368</identifier><language>eng</language><ispartof>Advanced energy materials, 2022-06, Vol.12 (24)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c169t-22b72187d3c5fb23f4dfed35c039e4096b59d35a82c84ba43004ec3017e0d82b3</citedby><cites>FETCH-LOGICAL-c169t-22b72187d3c5fb23f4dfed35c039e4096b59d35a82c84ba43004ec3017e0d82b3</cites><orcidid>0000-0003-3878-179X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wang, Xinran</creatorcontrib><creatorcontrib>Weng, Suting</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Huichun</creatorcontrib><creatorcontrib>Guo, Ruiqi</creatorcontrib><creatorcontrib>Sun, Yuheng</creatorcontrib><creatorcontrib>Zhao, Wenbin</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><title>8.5  µ m‐Thick Flexible‐Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air‐Stable and Interface‐Compatible All‐Solid‐State Lithium Metal Batteries</title><title>Advanced energy materials</title><description>All‐solid‐state lithium batteries (ASSLBs), as the next‐generation energy storage system, potentially bridge the gap between high energy density and operational safety. However, the application of ASSLBs is technically handicapped by the extremely weak interfacial contact and dendrite growth that is prone to unstabilize solid electrolyte interphase (SEI) with limited electrochemical performance. In this contribution, air‐stable and interface‐compatible solid electrolyte/lithium integration is proposed by in situ copolymerization of poly(ethylene glycol methacrylate)‐Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ‐lithium (PEGMA‐LAGP‐Li). The first‐of‐this‐kind hierarchy provides a promising synergy of flexibility‐rigidity (Young's modulus 3 GPa), high ionic conductivity (2.37  ×  10 −4  S cm −1 ), high lithium‐ion transfer number ( t Li+  =  0.87), and LiF‐rich SEI, all contributing to homogenized lithium‐ion flux, significantly prolonged cycle stability ( &gt; 3500 h) and obvious dendrite suppression for high‐performance ASSLBs. Furthermore, the integration protects lithium from air corrosion, providing insights into a novel interface‐enhancement paradigm and realizing the first ASSLBs assembly in ambient conditions without any loss of specific capacity.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwkAUhSdGEwmydT0v0DI_bWmXSEBIMCaC62Y6vYXRaUumYyI7HoHEF3Dt3hfgUXgSp6Lczf0751schG4p8SkhrC-gKn1GGCOER_EF6tCIBl4UB-TyPHN2jXpN80JcBQklnHfQV-yHh098-MblcbdfrpV8xRMN7yrT4A5PaqVyPN1mxrVFrVV-3H2MNUhrar210J8ru1ZvJZ5VFlZGWFVXuKgNHirj7AsrHAeLKv8VmELIljqqy42Ttq-h1q3uRG71FvA_8wGs0PhOWOdU0Nygq0LoBnp_vYueJ-PlaOrNH-9no-HckzRKrMdYNmA0HuRchkXGeBHkBeQ8lIQnEJAkysLErSJmMg4yEXAXBkhO6ABIHrOMd5F_4kpTN42BIt0YVQqzTSlJ27DTNuz0HDb_AYpPfQA</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Zhang, Kun</creator><creator>Wu, Feng</creator><creator>Wang, Xinran</creator><creator>Weng, Suting</creator><creator>Yang, Xiaoyu</creator><creator>Zhao, Huichun</creator><creator>Guo, Ruiqi</creator><creator>Sun, Yuheng</creator><creator>Zhao, Wenbin</creator><creator>Song, Tinglu</creator><creator>Wang, Xuefeng</creator><creator>Bai, Ying</creator><creator>Wu, Chuan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></search><sort><creationdate>202206</creationdate><title>8.5  µ m‐Thick Flexible‐Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air‐Stable and Interface‐Compatible All‐Solid‐State Lithium Metal Batteries</title><author>Zhang, Kun ; Wu, Feng ; Wang, Xinran ; Weng, Suting ; Yang, Xiaoyu ; Zhao, Huichun ; Guo, Ruiqi ; Sun, Yuheng ; Zhao, Wenbin ; Song, Tinglu ; Wang, Xuefeng ; Bai, Ying ; Wu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c169t-22b72187d3c5fb23f4dfed35c039e4096b59d35a82c84ba43004ec3017e0d82b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kun</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Wang, Xinran</creatorcontrib><creatorcontrib>Weng, Suting</creatorcontrib><creatorcontrib>Yang, Xiaoyu</creatorcontrib><creatorcontrib>Zhao, Huichun</creatorcontrib><creatorcontrib>Guo, Ruiqi</creatorcontrib><creatorcontrib>Sun, Yuheng</creatorcontrib><creatorcontrib>Zhao, Wenbin</creatorcontrib><creatorcontrib>Song, Tinglu</creatorcontrib><creatorcontrib>Wang, Xuefeng</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kun</au><au>Wu, Feng</au><au>Wang, Xinran</au><au>Weng, Suting</au><au>Yang, Xiaoyu</au><au>Zhao, Huichun</au><au>Guo, Ruiqi</au><au>Sun, Yuheng</au><au>Zhao, Wenbin</au><au>Song, Tinglu</au><au>Wang, Xuefeng</au><au>Bai, Ying</au><au>Wu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>8.5  µ m‐Thick Flexible‐Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air‐Stable and Interface‐Compatible All‐Solid‐State Lithium Metal Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2022-06</date><risdate>2022</risdate><volume>12</volume><issue>24</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>All‐solid‐state lithium batteries (ASSLBs), as the next‐generation energy storage system, potentially bridge the gap between high energy density and operational safety. However, the application of ASSLBs is technically handicapped by the extremely weak interfacial contact and dendrite growth that is prone to unstabilize solid electrolyte interphase (SEI) with limited electrochemical performance. In this contribution, air‐stable and interface‐compatible solid electrolyte/lithium integration is proposed by in situ copolymerization of poly(ethylene glycol methacrylate)‐Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 ‐lithium (PEGMA‐LAGP‐Li). The first‐of‐this‐kind hierarchy provides a promising synergy of flexibility‐rigidity (Young's modulus 3 GPa), high ionic conductivity (2.37  ×  10 −4  S cm −1 ), high lithium‐ion transfer number ( t Li+  =  0.87), and LiF‐rich SEI, all contributing to homogenized lithium‐ion flux, significantly prolonged cycle stability ( &gt; 3500 h) and obvious dendrite suppression for high‐performance ASSLBs. Furthermore, the integration protects lithium from air corrosion, providing insights into a novel interface‐enhancement paradigm and realizing the first ASSLBs assembly in ambient conditions without any loss of specific capacity.</abstract><doi>10.1002/aenm.202200368</doi><orcidid>https://orcid.org/0000-0003-3878-179X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2022-06, Vol.12 (24)
issn 1614-6832
1614-6840
language eng
recordid cdi_crossref_primary_10_1002_aenm_202200368
source Access via Wiley Online Library
title 8.5  µ m‐Thick Flexible‐Rigid Hybrid Solid–Electrolyte/Lithium Integration for Air‐Stable and Interface‐Compatible All‐Solid‐State Lithium Metal Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T04%3A40%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=8.5%C2%A0%20%C2%B5%20m%E2%80%90Thick%20Flexible%E2%80%90Rigid%20Hybrid%20Solid%E2%80%93Electrolyte/Lithium%20Integration%20for%20Air%E2%80%90Stable%20and%20Interface%E2%80%90Compatible%20All%E2%80%90Solid%E2%80%90State%20Lithium%20Metal%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Zhang,%20Kun&rft.date=2022-06&rft.volume=12&rft.issue=24&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.202200368&rft_dat=%3Ccrossref%3E10_1002_aenm_202200368%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true