Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)

Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐meta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2018-07, Vol.8 (20)
Hauptverfasser: Mortemard de Boisse, Benoit, Nishimura, Shin‐ichi, Watanabe, Eriko, Lander, Laura, Tsuchimoto, Akihisa, Kikkawa, Jun, Kobayashi, Eiichi, Asakura, Daisuke, Okubo, Masashi, Yamada, Atsuo
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Advanced energy materials
container_volume 8
creator Mortemard de Boisse, Benoit
Nishimura, Shin‐ichi
Watanabe, Eriko
Lander, Laura
Tsuchimoto, Akihisa
Kikkawa, Jun
Kobayashi, Eiichi
Asakura, Daisuke
Okubo, Masashi
Yamada, Atsuo
description Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na 2 Mn 3 O 7 that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.
doi_str_mv 10.1002/aenm.201800409
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aenm_201800409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aenm_201800409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</originalsourceid><addsrcrecordid>eNo9kDFPAjEYhhujiQRZnb9Rhzu-71pK62aIiglKQgiLMZe2tHAGDnMlhtscHY2Du3-NXyJEw7u8b57hHR7GzglTQszaxpfLNENSiAL1EWuQJJFIJfD4sHl2yloxvuAuQhNy3mBFv5jNFzWM_JuvYmEXHoabeubL7fvnyE9XG-jN_bKI66oGswaREkygKOHRgGh3tx9fsIGn7fcPULsLDyXIXT0PIYOLHbzak4lxpnT15Rk7CWYRfeu_m2x8ezPu9ZPB8O6-dz1InBI64ZxLOQ3BOys6aLWSnjt0SBanwWkXKHMUiFArm5GRxiutSVirXbcjO4o3Wfp366pVjJUP-WtVLE1V54T5XlW-V5UfVPFfZE5bow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Mortemard de Boisse, Benoit ; Nishimura, Shin‐ichi ; Watanabe, Eriko ; Lander, Laura ; Tsuchimoto, Akihisa ; Kikkawa, Jun ; Kobayashi, Eiichi ; Asakura, Daisuke ; Okubo, Masashi ; Yamada, Atsuo</creator><creatorcontrib>Mortemard de Boisse, Benoit ; Nishimura, Shin‐ichi ; Watanabe, Eriko ; Lander, Laura ; Tsuchimoto, Akihisa ; Kikkawa, Jun ; Kobayashi, Eiichi ; Asakura, Daisuke ; Okubo, Masashi ; Yamada, Atsuo</creatorcontrib><description>Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na 2 Mn 3 O 7 that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201800409</identifier><language>eng</language><ispartof>Advanced energy materials, 2018-07, Vol.8 (20)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</citedby><cites>FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</cites><orcidid>0000-0002-7880-5701 ; 0000-0003-0308-9904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mortemard de Boisse, Benoit</creatorcontrib><creatorcontrib>Nishimura, Shin‐ichi</creatorcontrib><creatorcontrib>Watanabe, Eriko</creatorcontrib><creatorcontrib>Lander, Laura</creatorcontrib><creatorcontrib>Tsuchimoto, Akihisa</creatorcontrib><creatorcontrib>Kikkawa, Jun</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Asakura, Daisuke</creatorcontrib><creatorcontrib>Okubo, Masashi</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><title>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</title><title>Advanced energy materials</title><description>Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na 2 Mn 3 O 7 that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPAjEYhhujiQRZnb9Rhzu-71pK62aIiglKQgiLMZe2tHAGDnMlhtscHY2Du3-NXyJEw7u8b57hHR7GzglTQszaxpfLNENSiAL1EWuQJJFIJfD4sHl2yloxvuAuQhNy3mBFv5jNFzWM_JuvYmEXHoabeubL7fvnyE9XG-jN_bKI66oGswaREkygKOHRgGh3tx9fsIGn7fcPULsLDyXIXT0PIYOLHbzak4lxpnT15Rk7CWYRfeu_m2x8ezPu9ZPB8O6-dz1InBI64ZxLOQ3BOys6aLWSnjt0SBanwWkXKHMUiFArm5GRxiutSVirXbcjO4o3Wfp366pVjJUP-WtVLE1V54T5XlW-V5UfVPFfZE5bow</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Mortemard de Boisse, Benoit</creator><creator>Nishimura, Shin‐ichi</creator><creator>Watanabe, Eriko</creator><creator>Lander, Laura</creator><creator>Tsuchimoto, Akihisa</creator><creator>Kikkawa, Jun</creator><creator>Kobayashi, Eiichi</creator><creator>Asakura, Daisuke</creator><creator>Okubo, Masashi</creator><creator>Yamada, Atsuo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7880-5701</orcidid><orcidid>https://orcid.org/0000-0003-0308-9904</orcidid></search><sort><creationdate>201807</creationdate><title>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</title><author>Mortemard de Boisse, Benoit ; Nishimura, Shin‐ichi ; Watanabe, Eriko ; Lander, Laura ; Tsuchimoto, Akihisa ; Kikkawa, Jun ; Kobayashi, Eiichi ; Asakura, Daisuke ; Okubo, Masashi ; Yamada, Atsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mortemard de Boisse, Benoit</creatorcontrib><creatorcontrib>Nishimura, Shin‐ichi</creatorcontrib><creatorcontrib>Watanabe, Eriko</creatorcontrib><creatorcontrib>Lander, Laura</creatorcontrib><creatorcontrib>Tsuchimoto, Akihisa</creatorcontrib><creatorcontrib>Kikkawa, Jun</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Asakura, Daisuke</creatorcontrib><creatorcontrib>Okubo, Masashi</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mortemard de Boisse, Benoit</au><au>Nishimura, Shin‐ichi</au><au>Watanabe, Eriko</au><au>Lander, Laura</au><au>Tsuchimoto, Akihisa</au><au>Kikkawa, Jun</au><au>Kobayashi, Eiichi</au><au>Asakura, Daisuke</au><au>Okubo, Masashi</au><au>Yamada, Atsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</atitle><jtitle>Advanced energy materials</jtitle><date>2018-07</date><risdate>2018</risdate><volume>8</volume><issue>20</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na 2 Mn 3 O 7 that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.</abstract><doi>10.1002/aenm.201800409</doi><orcidid>https://orcid.org/0000-0002-7880-5701</orcidid><orcidid>https://orcid.org/0000-0003-0308-9904</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2018-07, Vol.8 (20)
issn 1614-6832
1614-6840
language eng
recordid cdi_crossref_primary_10_1002_aenm_201800409
source Wiley Online Library - AutoHoldings Journals
title Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reversible%20Oxygen%E2%80%90Redox%20Chemistry%20at%204.1%20V%20in%20Na%204/7%E2%88%92%20x%20%5B%E2%96%A1%201/7%20Mn%206/7%20%5DO%202%20(%E2%96%A1:%20Mn%20Vacancy)&rft.jtitle=Advanced%20energy%20materials&rft.au=Mortemard%20de%20Boisse,%20Benoit&rft.date=2018-07&rft.volume=8&rft.issue=20&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201800409&rft_dat=%3Ccrossref%3E10_1002_aenm_201800409%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true