Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)
Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐meta...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2018-07, Vol.8 (20) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 8 |
creator | Mortemard de Boisse, Benoit Nishimura, Shin‐ichi Watanabe, Eriko Lander, Laura Tsuchimoto, Akihisa Kikkawa, Jun Kobayashi, Eiichi Asakura, Daisuke Okubo, Masashi Yamada, Atsuo |
description | Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na
2
Mn
3
O
7
that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes. |
doi_str_mv | 10.1002/aenm.201800409 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aenm_201800409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aenm_201800409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</originalsourceid><addsrcrecordid>eNo9kDFPAjEYhhujiQRZnb9Rhzu-71pK62aIiglKQgiLMZe2tHAGDnMlhtscHY2Du3-NXyJEw7u8b57hHR7GzglTQszaxpfLNENSiAL1EWuQJJFIJfD4sHl2yloxvuAuQhNy3mBFv5jNFzWM_JuvYmEXHoabeubL7fvnyE9XG-jN_bKI66oGswaREkygKOHRgGh3tx9fsIGn7fcPULsLDyXIXT0PIYOLHbzak4lxpnT15Rk7CWYRfeu_m2x8ezPu9ZPB8O6-dz1InBI64ZxLOQ3BOys6aLWSnjt0SBanwWkXKHMUiFArm5GRxiutSVirXbcjO4o3Wfp366pVjJUP-WtVLE1V54T5XlW-V5UfVPFfZE5bow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Mortemard de Boisse, Benoit ; Nishimura, Shin‐ichi ; Watanabe, Eriko ; Lander, Laura ; Tsuchimoto, Akihisa ; Kikkawa, Jun ; Kobayashi, Eiichi ; Asakura, Daisuke ; Okubo, Masashi ; Yamada, Atsuo</creator><creatorcontrib>Mortemard de Boisse, Benoit ; Nishimura, Shin‐ichi ; Watanabe, Eriko ; Lander, Laura ; Tsuchimoto, Akihisa ; Kikkawa, Jun ; Kobayashi, Eiichi ; Asakura, Daisuke ; Okubo, Masashi ; Yamada, Atsuo</creatorcontrib><description>Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na
2
Mn
3
O
7
that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201800409</identifier><language>eng</language><ispartof>Advanced energy materials, 2018-07, Vol.8 (20)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</citedby><cites>FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</cites><orcidid>0000-0002-7880-5701 ; 0000-0003-0308-9904</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Mortemard de Boisse, Benoit</creatorcontrib><creatorcontrib>Nishimura, Shin‐ichi</creatorcontrib><creatorcontrib>Watanabe, Eriko</creatorcontrib><creatorcontrib>Lander, Laura</creatorcontrib><creatorcontrib>Tsuchimoto, Akihisa</creatorcontrib><creatorcontrib>Kikkawa, Jun</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Asakura, Daisuke</creatorcontrib><creatorcontrib>Okubo, Masashi</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><title>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</title><title>Advanced energy materials</title><description>Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na
2
Mn
3
O
7
that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPAjEYhhujiQRZnb9Rhzu-71pK62aIiglKQgiLMZe2tHAGDnMlhtscHY2Du3-NXyJEw7u8b57hHR7GzglTQszaxpfLNENSiAL1EWuQJJFIJfD4sHl2yloxvuAuQhNy3mBFv5jNFzWM_JuvYmEXHoabeubL7fvnyE9XG-jN_bKI66oGswaREkygKOHRgGh3tx9fsIGn7fcPULsLDyXIXT0PIYOLHbzak4lxpnT15Rk7CWYRfeu_m2x8ezPu9ZPB8O6-dz1InBI64ZxLOQ3BOys6aLWSnjt0SBanwWkXKHMUiFArm5GRxiutSVirXbcjO4o3Wfp366pVjJUP-WtVLE1V54T5XlW-V5UfVPFfZE5bow</recordid><startdate>201807</startdate><enddate>201807</enddate><creator>Mortemard de Boisse, Benoit</creator><creator>Nishimura, Shin‐ichi</creator><creator>Watanabe, Eriko</creator><creator>Lander, Laura</creator><creator>Tsuchimoto, Akihisa</creator><creator>Kikkawa, Jun</creator><creator>Kobayashi, Eiichi</creator><creator>Asakura, Daisuke</creator><creator>Okubo, Masashi</creator><creator>Yamada, Atsuo</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-7880-5701</orcidid><orcidid>https://orcid.org/0000-0003-0308-9904</orcidid></search><sort><creationdate>201807</creationdate><title>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</title><author>Mortemard de Boisse, Benoit ; Nishimura, Shin‐ichi ; Watanabe, Eriko ; Lander, Laura ; Tsuchimoto, Akihisa ; Kikkawa, Jun ; Kobayashi, Eiichi ; Asakura, Daisuke ; Okubo, Masashi ; Yamada, Atsuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c849-33366dffecb450b986e3c0c01b0dfc9cf12c1f11098b21a6ae89914bb9c756583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mortemard de Boisse, Benoit</creatorcontrib><creatorcontrib>Nishimura, Shin‐ichi</creatorcontrib><creatorcontrib>Watanabe, Eriko</creatorcontrib><creatorcontrib>Lander, Laura</creatorcontrib><creatorcontrib>Tsuchimoto, Akihisa</creatorcontrib><creatorcontrib>Kikkawa, Jun</creatorcontrib><creatorcontrib>Kobayashi, Eiichi</creatorcontrib><creatorcontrib>Asakura, Daisuke</creatorcontrib><creatorcontrib>Okubo, Masashi</creatorcontrib><creatorcontrib>Yamada, Atsuo</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mortemard de Boisse, Benoit</au><au>Nishimura, Shin‐ichi</au><au>Watanabe, Eriko</au><au>Lander, Laura</au><au>Tsuchimoto, Akihisa</au><au>Kikkawa, Jun</au><au>Kobayashi, Eiichi</au><au>Asakura, Daisuke</au><au>Okubo, Masashi</au><au>Yamada, Atsuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)</atitle><jtitle>Advanced energy materials</jtitle><date>2018-07</date><risdate>2018</risdate><volume>8</volume><issue>20</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Increasing the energy density of rechargeable batteries is of paramount importance toward achieving a sustainable society. The present limitation of the energy density is owing to the small capacity of cathode materials, in which the (de)intercalation of ions is charge‐compensated by transition‐metal redox reactions. Although additional oxygen‐redox reactions of oxide cathodes have been recognized as an effective way to overcome this capacity limit, irreversible structural changes that occur during charge/discharge cause voltage drops and cycle degradation. Here, a highly reversible oxygen‐redox capacity of Na
2
Mn
3
O
7
that possesses inherent Mn vacancies in a layered structure is found. The cross validation of theoretical predictions and experimental observations demonstrates that the nonbonding 2p orbitals of oxygens neighboring the Mn vacancies contribute to the oxygen‐redox capacity without making the Mn−O bond labile, highlighting the critical role of transition‐metal vacancies for the design of reversible oxygen‐redox cathodes.</abstract><doi>10.1002/aenm.201800409</doi><orcidid>https://orcid.org/0000-0002-7880-5701</orcidid><orcidid>https://orcid.org/0000-0003-0308-9904</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2018-07, Vol.8 (20) |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_crossref_primary_10_1002_aenm_201800409 |
source | Wiley Online Library - AutoHoldings Journals |
title | Highly Reversible Oxygen‐Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A09%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20Reversible%20Oxygen%E2%80%90Redox%20Chemistry%20at%204.1%20V%20in%20Na%204/7%E2%88%92%20x%20%5B%E2%96%A1%201/7%20Mn%206/7%20%5DO%202%20(%E2%96%A1:%20Mn%20Vacancy)&rft.jtitle=Advanced%20energy%20materials&rft.au=Mortemard%20de%20Boisse,%20Benoit&rft.date=2018-07&rft.volume=8&rft.issue=20&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201800409&rft_dat=%3Ccrossref%3E10_1002_aenm_201800409%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |