Hybrid Photovoltaics: Hybrid Photovoltaics – from Fundamentals towards Application (Adv. Energy Mater. 16/2017)
In hybrid photovoltaics an organic and an inorganic semiconductor are combined in the active layer to have the advantages of both material classes in a single device. In article number 1700248, Peter Müller‐Buschbaum and co‐workers review research related to hybrid solar cells which combine conjugat...
Gespeichert in:
Veröffentlicht in: | Advanced energy materials 2017-08, Vol.7 (16), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 16 |
container_start_page | |
container_title | Advanced energy materials |
container_volume | 7 |
creator | Müller‐Buschbaum, Peter Thelakkat, Mukundan Fässler, Thomas F. Stutzmann, Martin |
description | In hybrid photovoltaics an organic and an inorganic semiconductor are combined in the active layer to have the advantages of both material classes in a single device. In article number 1700248, Peter Müller‐Buschbaum and co‐workers review research related to hybrid solar cells which combine conjugated polymers with inorganic materials such as titanium dioxide, zinc oxide, silicon, germanium and quantum dots. Hybrid solar cells based on crystalline Si are discussed for comparison. Particular emphasis is put on different routes to tailor nanostructures of the organic or inorganic component. Cover Image by Christoph Hohmann, Nanosystems Initiative Munich (NIM). |
doi_str_mv | 10.1002/aenm.201770090 |
format | Article |
fullrecord | <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aenm_201770090</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AENM201770090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1290-b40348ad8ffd6ffc72f23961fe0fddd78faadc4cc4a19d5303dfb6d64ca347bf3</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EElXpyuwRhqTn2DgJW1SlFKkFBpgjx38gKImDHVpl4x14Q56EVkVlQeKWO_103-n0IXROICQA0VTotgkjIHEMkMIRGhFOWMATBseHmUanaOL9K2yLpQQoHaG3xVC6SuGHF9vbta17UUl_jf9K8dfHJzbONnj-3irR6LYXtce93QinPM66rq6k6Cvb4otMrUOct9o9D3gleu1CTPh099_lGToxW05PfvoYPc3zx9kiWN7f3M6yZSBJlEJQMqAsESoxRnFjZByZiKacGA1GKRUnRgglmZRMkFRdUaDKlFxxJgVlcWnoGIX7u9JZ7502ReeqRrihIFDsnBU7Z8XB2RZI98CmqvXwz3aR5XerX_YbzKNyhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hybrid Photovoltaics: Hybrid Photovoltaics – from Fundamentals towards Application (Adv. Energy Mater. 16/2017)</title><source>Wiley Online Library All Journals</source><creator>Müller‐Buschbaum, Peter ; Thelakkat, Mukundan ; Fässler, Thomas F. ; Stutzmann, Martin</creator><creatorcontrib>Müller‐Buschbaum, Peter ; Thelakkat, Mukundan ; Fässler, Thomas F. ; Stutzmann, Martin</creatorcontrib><description>In hybrid photovoltaics an organic and an inorganic semiconductor are combined in the active layer to have the advantages of both material classes in a single device. In article number 1700248, Peter Müller‐Buschbaum and co‐workers review research related to hybrid solar cells which combine conjugated polymers with inorganic materials such as titanium dioxide, zinc oxide, silicon, germanium and quantum dots. Hybrid solar cells based on crystalline Si are discussed for comparison. Particular emphasis is put on different routes to tailor nanostructures of the organic or inorganic component. Cover Image by Christoph Hohmann, Nanosystems Initiative Munich (NIM).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201770090</identifier><language>eng</language><subject>block copolymer ; hybrid solar cells ; morphology ; titanium dioxide ; zinc oxide</subject><ispartof>Advanced energy materials, 2017-08, Vol.7 (16), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faenm.201770090$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faenm.201770090$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Müller‐Buschbaum, Peter</creatorcontrib><creatorcontrib>Thelakkat, Mukundan</creatorcontrib><creatorcontrib>Fässler, Thomas F.</creatorcontrib><creatorcontrib>Stutzmann, Martin</creatorcontrib><title>Hybrid Photovoltaics: Hybrid Photovoltaics – from Fundamentals towards Application (Adv. Energy Mater. 16/2017)</title><title>Advanced energy materials</title><description>In hybrid photovoltaics an organic and an inorganic semiconductor are combined in the active layer to have the advantages of both material classes in a single device. In article number 1700248, Peter Müller‐Buschbaum and co‐workers review research related to hybrid solar cells which combine conjugated polymers with inorganic materials such as titanium dioxide, zinc oxide, silicon, germanium and quantum dots. Hybrid solar cells based on crystalline Si are discussed for comparison. Particular emphasis is put on different routes to tailor nanostructures of the organic or inorganic component. Cover Image by Christoph Hohmann, Nanosystems Initiative Munich (NIM).</description><subject>block copolymer</subject><subject>hybrid solar cells</subject><subject>morphology</subject><subject>titanium dioxide</subject><subject>zinc oxide</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhy0EElXpyuwRhqTn2DgJW1SlFKkFBpgjx38gKImDHVpl4x14Q56EVkVlQeKWO_103-n0IXROICQA0VTotgkjIHEMkMIRGhFOWMATBseHmUanaOL9K2yLpQQoHaG3xVC6SuGHF9vbta17UUl_jf9K8dfHJzbONnj-3irR6LYXtce93QinPM66rq6k6Cvb4otMrUOct9o9D3gleu1CTPh099_lGToxW05PfvoYPc3zx9kiWN7f3M6yZSBJlEJQMqAsESoxRnFjZByZiKacGA1GKRUnRgglmZRMkFRdUaDKlFxxJgVlcWnoGIX7u9JZ7502ReeqRrihIFDsnBU7Z8XB2RZI98CmqvXwz3aR5XerX_YbzKNyhA</recordid><startdate>20170823</startdate><enddate>20170823</enddate><creator>Müller‐Buschbaum, Peter</creator><creator>Thelakkat, Mukundan</creator><creator>Fässler, Thomas F.</creator><creator>Stutzmann, Martin</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170823</creationdate><title>Hybrid Photovoltaics: Hybrid Photovoltaics – from Fundamentals towards Application (Adv. Energy Mater. 16/2017)</title><author>Müller‐Buschbaum, Peter ; Thelakkat, Mukundan ; Fässler, Thomas F. ; Stutzmann, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1290-b40348ad8ffd6ffc72f23961fe0fddd78faadc4cc4a19d5303dfb6d64ca347bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>block copolymer</topic><topic>hybrid solar cells</topic><topic>morphology</topic><topic>titanium dioxide</topic><topic>zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Müller‐Buschbaum, Peter</creatorcontrib><creatorcontrib>Thelakkat, Mukundan</creatorcontrib><creatorcontrib>Fässler, Thomas F.</creatorcontrib><creatorcontrib>Stutzmann, Martin</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Müller‐Buschbaum, Peter</au><au>Thelakkat, Mukundan</au><au>Fässler, Thomas F.</au><au>Stutzmann, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Photovoltaics: Hybrid Photovoltaics – from Fundamentals towards Application (Adv. Energy Mater. 16/2017)</atitle><jtitle>Advanced energy materials</jtitle><date>2017-08-23</date><risdate>2017</risdate><volume>7</volume><issue>16</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>In hybrid photovoltaics an organic and an inorganic semiconductor are combined in the active layer to have the advantages of both material classes in a single device. In article number 1700248, Peter Müller‐Buschbaum and co‐workers review research related to hybrid solar cells which combine conjugated polymers with inorganic materials such as titanium dioxide, zinc oxide, silicon, germanium and quantum dots. Hybrid solar cells based on crystalline Si are discussed for comparison. Particular emphasis is put on different routes to tailor nanostructures of the organic or inorganic component. Cover Image by Christoph Hohmann, Nanosystems Initiative Munich (NIM).</abstract><doi>10.1002/aenm.201770090</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1614-6832 |
ispartof | Advanced energy materials, 2017-08, Vol.7 (16), p.n/a |
issn | 1614-6832 1614-6840 |
language | eng |
recordid | cdi_crossref_primary_10_1002_aenm_201770090 |
source | Wiley Online Library All Journals |
subjects | block copolymer hybrid solar cells morphology titanium dioxide zinc oxide |
title | Hybrid Photovoltaics: Hybrid Photovoltaics – from Fundamentals towards Application (Adv. Energy Mater. 16/2017) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T07%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Photovoltaics:%20Hybrid%20Photovoltaics%20%E2%80%93%20from%20Fundamentals%20towards%20Application%20(Adv.%20Energy%20Mater.%2016/2017)&rft.jtitle=Advanced%20energy%20materials&rft.au=M%C3%BCller%E2%80%90Buschbaum,%20Peter&rft.date=2017-08-23&rft.volume=7&rft.issue=16&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201770090&rft_dat=%3Cwiley_cross%3EAENM201770090%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |