Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(Ni x Mn y Co z )O 2 Cathode Materials for High Performance Li‐Ion Battery

Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(Ni x Mn y Co z )O 2 (NMC) ( x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2016-02, Vol.6 (4)
Hauptverfasser: Cui, Suihan, Wei, Yi, Liu, Tongchao, Deng, Wenjun, Hu, Zongxiang, Su, Yantao, Li, Hao, Li, Maofan, Guo, Hua, Duan, Yandong, Wang, Weidong, Rao, Mumin, Zheng, Jiaxin, Wang, Xinwei, Pan, Feng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Advanced energy materials
container_volume 6
creator Cui, Suihan
Wei, Yi
Liu, Tongchao
Deng, Wenjun
Hu, Zongxiang
Su, Yantao
Li, Hao
Li, Maofan
Guo, Hua
Duan, Yandong
Wang, Weidong
Rao, Mumin
Zheng, Jiaxin
Wang, Xinwei
Pan, Feng
description Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(Ni x Mn y Co z )O 2 (NMC) ( x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNi x Mn y Co z O 2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from −25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi 0.6 Mn 0.2 Co 0.2 O 2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.
doi_str_mv 10.1002/aenm.201501309
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aenm_201501309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aenm_201501309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c169t-330552aa475de2041853302cc8590c3352d852b708da4ada0e1c31d599171d673</originalsourceid><addsrcrecordid>eNo9kLtOw0AURFcIJKKQlvqWUDjsw-tHCSaQSA6hCLW17IMswna03og4FZ9AyffxJWwA5TYzGo3mSgehc4LHBGN6JXRTjykmHBOG8yM0IAmJoySL8fHBM3qKRl33isPFOcGMDdDXYu1tbXdawVLXa-2E3zgNE2O09NAaKO33x-esbeDWGrPpbHDv1q-gFL12Iey8aKQG24TmxYOFLcwb6KFoYQeXC6BQCL9qlYa58NpZ8daBaR1M7csKHrULvv4dOPy5ET4U-zN0YkJZj_51iJ7uJstiGpWL-1lxXUaSJLmPGMOcUyHilCtNcUwyHiIqZcZzLBnjVGWcPqc4UyIWSmBNJCOK5zlJiUpSNkTjv13p2q5z2lRrZ2vh-orgao-22qOtDmjZDzlcbQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(Ni x Mn y Co z )O 2 Cathode Materials for High Performance Li‐Ion Battery</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cui, Suihan ; Wei, Yi ; Liu, Tongchao ; Deng, Wenjun ; Hu, Zongxiang ; Su, Yantao ; Li, Hao ; Li, Maofan ; Guo, Hua ; Duan, Yandong ; Wang, Weidong ; Rao, Mumin ; Zheng, Jiaxin ; Wang, Xinwei ; Pan, Feng</creator><creatorcontrib>Cui, Suihan ; Wei, Yi ; Liu, Tongchao ; Deng, Wenjun ; Hu, Zongxiang ; Su, Yantao ; Li, Hao ; Li, Maofan ; Guo, Hua ; Duan, Yandong ; Wang, Weidong ; Rao, Mumin ; Zheng, Jiaxin ; Wang, Xinwei ; Pan, Feng</creatorcontrib><description>Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(Ni x Mn y Co z )O 2 (NMC) ( x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNi x Mn y Co z O 2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from −25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi 0.6 Mn 0.2 Co 0.2 O 2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201501309</identifier><language>eng</language><ispartof>Advanced energy materials, 2016-02, Vol.6 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c169t-330552aa475de2041853302cc8590c3352d852b708da4ada0e1c31d599171d673</citedby><cites>FETCH-LOGICAL-c169t-330552aa475de2041853302cc8590c3352d852b708da4ada0e1c31d599171d673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Cui, Suihan</creatorcontrib><creatorcontrib>Wei, Yi</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Deng, Wenjun</creatorcontrib><creatorcontrib>Hu, Zongxiang</creatorcontrib><creatorcontrib>Su, Yantao</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Maofan</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Duan, Yandong</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Rao, Mumin</creatorcontrib><creatorcontrib>Zheng, Jiaxin</creatorcontrib><creatorcontrib>Wang, Xinwei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><title>Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(Ni x Mn y Co z )O 2 Cathode Materials for High Performance Li‐Ion Battery</title><title>Advanced energy materials</title><description>Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(Ni x Mn y Co z )O 2 (NMC) ( x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNi x Mn y Co z O 2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from −25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi 0.6 Mn 0.2 Co 0.2 O 2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.</description><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kLtOw0AURFcIJKKQlvqWUDjsw-tHCSaQSA6hCLW17IMswna03og4FZ9AyffxJWwA5TYzGo3mSgehc4LHBGN6JXRTjykmHBOG8yM0IAmJoySL8fHBM3qKRl33isPFOcGMDdDXYu1tbXdawVLXa-2E3zgNE2O09NAaKO33x-esbeDWGrPpbHDv1q-gFL12Iey8aKQG24TmxYOFLcwb6KFoYQeXC6BQCL9qlYa58NpZ8daBaR1M7csKHrULvv4dOPy5ET4U-zN0YkJZj_51iJ7uJstiGpWL-1lxXUaSJLmPGMOcUyHilCtNcUwyHiIqZcZzLBnjVGWcPqc4UyIWSmBNJCOK5zlJiUpSNkTjv13p2q5z2lRrZ2vh-orgao-22qOtDmjZDzlcbQY</recordid><startdate>20160218</startdate><enddate>20160218</enddate><creator>Cui, Suihan</creator><creator>Wei, Yi</creator><creator>Liu, Tongchao</creator><creator>Deng, Wenjun</creator><creator>Hu, Zongxiang</creator><creator>Su, Yantao</creator><creator>Li, Hao</creator><creator>Li, Maofan</creator><creator>Guo, Hua</creator><creator>Duan, Yandong</creator><creator>Wang, Weidong</creator><creator>Rao, Mumin</creator><creator>Zheng, Jiaxin</creator><creator>Wang, Xinwei</creator><creator>Pan, Feng</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160218</creationdate><title>Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(Ni x Mn y Co z )O 2 Cathode Materials for High Performance Li‐Ion Battery</title><author>Cui, Suihan ; Wei, Yi ; Liu, Tongchao ; Deng, Wenjun ; Hu, Zongxiang ; Su, Yantao ; Li, Hao ; Li, Maofan ; Guo, Hua ; Duan, Yandong ; Wang, Weidong ; Rao, Mumin ; Zheng, Jiaxin ; Wang, Xinwei ; Pan, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c169t-330552aa475de2041853302cc8590c3352d852b708da4ada0e1c31d599171d673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Suihan</creatorcontrib><creatorcontrib>Wei, Yi</creatorcontrib><creatorcontrib>Liu, Tongchao</creatorcontrib><creatorcontrib>Deng, Wenjun</creatorcontrib><creatorcontrib>Hu, Zongxiang</creatorcontrib><creatorcontrib>Su, Yantao</creatorcontrib><creatorcontrib>Li, Hao</creatorcontrib><creatorcontrib>Li, Maofan</creatorcontrib><creatorcontrib>Guo, Hua</creatorcontrib><creatorcontrib>Duan, Yandong</creatorcontrib><creatorcontrib>Wang, Weidong</creatorcontrib><creatorcontrib>Rao, Mumin</creatorcontrib><creatorcontrib>Zheng, Jiaxin</creatorcontrib><creatorcontrib>Wang, Xinwei</creatorcontrib><creatorcontrib>Pan, Feng</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Suihan</au><au>Wei, Yi</au><au>Liu, Tongchao</au><au>Deng, Wenjun</au><au>Hu, Zongxiang</au><au>Su, Yantao</au><au>Li, Hao</au><au>Li, Maofan</au><au>Guo, Hua</au><au>Duan, Yandong</au><au>Wang, Weidong</au><au>Rao, Mumin</au><au>Zheng, Jiaxin</au><au>Wang, Xinwei</au><au>Pan, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(Ni x Mn y Co z )O 2 Cathode Materials for High Performance Li‐Ion Battery</atitle><jtitle>Advanced energy materials</jtitle><date>2016-02-18</date><risdate>2016</risdate><volume>6</volume><issue>4</issue><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Understanding and optimizing the temperature effects of Li‐ion diffusion by analyzing crystal structures of layered Li(Ni x Mn y Co z )O 2 (NMC) ( x + y + z = 1) materials is important to develop advanced rechargeable Li‐ion batteries (LIBs) for multi‐temperature applications with high power density. Combined with experiments and ab initio calculations, the layer distances and kinetics of Li‐ion diffusion of LiNi x Mn y Co z O 2 (NMC) materials in different states of Li‐ion de‐intercalation and temperatures are investigated systematically. An improved model is also developed to reduce the system error of the “Galvanostatic Intermittent Titration Technique” with a correction of NMC particle size distribution. The Li‐ion diffusion coefficients of all the NMC materials are measured from −25 to 50 °C. It is found that the Li‐ion diffusion coefficient of LiNi 0.6 Mn 0.2 Co 0.2 O 2 is the largest with the minimum temperature effect. Ab initio calculations and XRD measurements indicate that the larger Li slab space benefits to Li‐ion diffusion with minimum temperature effect in layered NMC materials.</abstract><doi>10.1002/aenm.201501309</doi></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2016-02, Vol.6 (4)
issn 1614-6832
1614-6840
language eng
recordid cdi_crossref_primary_10_1002_aenm_201501309
source Wiley Online Library Journals Frontfile Complete
title Optimized Temperature Effect of Li‐Ion Diffusion with Layer Distance in Li(Ni x Mn y Co z )O 2 Cathode Materials for High Performance Li‐Ion Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20Temperature%20Effect%20of%20Li%E2%80%90Ion%20Diffusion%20with%20Layer%20Distance%20in%20Li(Ni%20x%20Mn%20y%20Co%20z%20)O%202%20Cathode%20Materials%20for%20High%20Performance%20Li%E2%80%90Ion%20Battery&rft.jtitle=Advanced%20energy%20materials&rft.au=Cui,%20Suihan&rft.date=2016-02-18&rft.volume=6&rft.issue=4&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201501309&rft_dat=%3Ccrossref%3E10_1002_aenm_201501309%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true