Strain Driven Electrical Bandgap Tuning of Atomically Thin WSe 2

Tuning electrical properties of 2D materials through mechanical strain has predominantly focused on n‐type 2D materials like MoS 2 and WS 2 , while p‐type 2D materials such as WSe 2 remain relatively unexplored. Here, the impact of controlled mechanical strain on the electron transport characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced electronic materials 2024-11, Vol.10 (11)
Hauptverfasser: Islam, Md Akibul, Nicholson, Eric, Barri, Nima, Onodera, Momoko, Starkov, Danny, Serles, Peter, He, Shuo, Kumral, Boran, Zavabeti, Ali, Shahsa, Haleh, Cui, Teng, Wang, Guorui, Machida, Tomoki, Singh, C.V., Filleter, Tobin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Advanced electronic materials
container_volume 10
creator Islam, Md Akibul
Nicholson, Eric
Barri, Nima
Onodera, Momoko
Starkov, Danny
Serles, Peter
He, Shuo
Kumral, Boran
Zavabeti, Ali
Shahsa, Haleh
Cui, Teng
Wang, Guorui
Machida, Tomoki
Singh, C.V.
Filleter, Tobin
description Tuning electrical properties of 2D materials through mechanical strain has predominantly focused on n‐type 2D materials like MoS 2 and WS 2 , while p‐type 2D materials such as WSe 2 remain relatively unexplored. Here, the impact of controlled mechanical strain on the electron transport characteristics of both mono and bi‐layer WSe 2 is studied. Through coupling atomic force microscopy (AFM) nanoindentation techniques and conductive AFM, the ability to finely tune the electronic band structure of WSe 2 is demonstrated. The research offers valuable mechanistic insights into understanding how WSe 2 's electronic properties respond to mechanical strain, a critical prerequisite for the development of flexible photoelectronic devices. It is also observed that under high pressure, the AFM tip/monolayer WSe 2 /metal substrate junction transitions from Schottky to Ohmic contact, attributed to significant charge injection from the substrate to the WSe 2 . These findings are significant for designing efficient metal/semiconductor contact in thin and flexible PMOS (p‐type Metal–Oxide–Semiconductor) devices.
doi_str_mv 10.1002/aelm.202400225
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aelm_202400225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aelm_202400225</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_1002_aelm_2024002253</originalsourceid><addsrcrecordid>eNqVjl0LgjAYhUcUJOVt1_sD2rv5Ed71ZXSvUHdj2LTFnLJZ4L9PIaLbrs45HB54EFoR8AkAXXOhap8CDYdBowlyKEkSj8Rwnf70OXKtfQAA2cRBGAUO2mad4VLjo5EvoXGqRNEZWXCF91zfKt7i_KmlrnBT4l3X1OOlepzfB-aSCUyXaFZyZYX7yQXyT2l-OHuFaaw1omStkTU3PSPARlU2qrKvavA38AZKqkVp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain Driven Electrical Bandgap Tuning of Atomically Thin WSe 2</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Islam, Md Akibul ; Nicholson, Eric ; Barri, Nima ; Onodera, Momoko ; Starkov, Danny ; Serles, Peter ; He, Shuo ; Kumral, Boran ; Zavabeti, Ali ; Shahsa, Haleh ; Cui, Teng ; Wang, Guorui ; Machida, Tomoki ; Singh, C.V. ; Filleter, Tobin</creator><creatorcontrib>Islam, Md Akibul ; Nicholson, Eric ; Barri, Nima ; Onodera, Momoko ; Starkov, Danny ; Serles, Peter ; He, Shuo ; Kumral, Boran ; Zavabeti, Ali ; Shahsa, Haleh ; Cui, Teng ; Wang, Guorui ; Machida, Tomoki ; Singh, C.V. ; Filleter, Tobin</creatorcontrib><description>Tuning electrical properties of 2D materials through mechanical strain has predominantly focused on n‐type 2D materials like MoS 2 and WS 2 , while p‐type 2D materials such as WSe 2 remain relatively unexplored. Here, the impact of controlled mechanical strain on the electron transport characteristics of both mono and bi‐layer WSe 2 is studied. Through coupling atomic force microscopy (AFM) nanoindentation techniques and conductive AFM, the ability to finely tune the electronic band structure of WSe 2 is demonstrated. The research offers valuable mechanistic insights into understanding how WSe 2 's electronic properties respond to mechanical strain, a critical prerequisite for the development of flexible photoelectronic devices. It is also observed that under high pressure, the AFM tip/monolayer WSe 2 /metal substrate junction transitions from Schottky to Ohmic contact, attributed to significant charge injection from the substrate to the WSe 2 . These findings are significant for designing efficient metal/semiconductor contact in thin and flexible PMOS (p‐type Metal–Oxide–Semiconductor) devices.</description><identifier>ISSN: 2199-160X</identifier><identifier>EISSN: 2199-160X</identifier><identifier>DOI: 10.1002/aelm.202400225</identifier><language>eng</language><ispartof>Advanced electronic materials, 2024-11, Vol.10 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_1002_aelm_2024002253</cites><orcidid>0000-0002-4560-0515 ; 0000-0003-2609-4773</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Islam, Md Akibul</creatorcontrib><creatorcontrib>Nicholson, Eric</creatorcontrib><creatorcontrib>Barri, Nima</creatorcontrib><creatorcontrib>Onodera, Momoko</creatorcontrib><creatorcontrib>Starkov, Danny</creatorcontrib><creatorcontrib>Serles, Peter</creatorcontrib><creatorcontrib>He, Shuo</creatorcontrib><creatorcontrib>Kumral, Boran</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Shahsa, Haleh</creatorcontrib><creatorcontrib>Cui, Teng</creatorcontrib><creatorcontrib>Wang, Guorui</creatorcontrib><creatorcontrib>Machida, Tomoki</creatorcontrib><creatorcontrib>Singh, C.V.</creatorcontrib><creatorcontrib>Filleter, Tobin</creatorcontrib><title>Strain Driven Electrical Bandgap Tuning of Atomically Thin WSe 2</title><title>Advanced electronic materials</title><description>Tuning electrical properties of 2D materials through mechanical strain has predominantly focused on n‐type 2D materials like MoS 2 and WS 2 , while p‐type 2D materials such as WSe 2 remain relatively unexplored. Here, the impact of controlled mechanical strain on the electron transport characteristics of both mono and bi‐layer WSe 2 is studied. Through coupling atomic force microscopy (AFM) nanoindentation techniques and conductive AFM, the ability to finely tune the electronic band structure of WSe 2 is demonstrated. The research offers valuable mechanistic insights into understanding how WSe 2 's electronic properties respond to mechanical strain, a critical prerequisite for the development of flexible photoelectronic devices. It is also observed that under high pressure, the AFM tip/monolayer WSe 2 /metal substrate junction transitions from Schottky to Ohmic contact, attributed to significant charge injection from the substrate to the WSe 2 . These findings are significant for designing efficient metal/semiconductor contact in thin and flexible PMOS (p‐type Metal–Oxide–Semiconductor) devices.</description><issn>2199-160X</issn><issn>2199-160X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjl0LgjAYhUcUJOVt1_sD2rv5Ed71ZXSvUHdj2LTFnLJZ4L9PIaLbrs45HB54EFoR8AkAXXOhap8CDYdBowlyKEkSj8Rwnf70OXKtfQAA2cRBGAUO2mad4VLjo5EvoXGqRNEZWXCF91zfKt7i_KmlrnBT4l3X1OOlepzfB-aSCUyXaFZyZYX7yQXyT2l-OHuFaaw1omStkTU3PSPARlU2qrKvavA38AZKqkVp</recordid><startdate>202411</startdate><enddate>202411</enddate><creator>Islam, Md Akibul</creator><creator>Nicholson, Eric</creator><creator>Barri, Nima</creator><creator>Onodera, Momoko</creator><creator>Starkov, Danny</creator><creator>Serles, Peter</creator><creator>He, Shuo</creator><creator>Kumral, Boran</creator><creator>Zavabeti, Ali</creator><creator>Shahsa, Haleh</creator><creator>Cui, Teng</creator><creator>Wang, Guorui</creator><creator>Machida, Tomoki</creator><creator>Singh, C.V.</creator><creator>Filleter, Tobin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4560-0515</orcidid><orcidid>https://orcid.org/0000-0003-2609-4773</orcidid></search><sort><creationdate>202411</creationdate><title>Strain Driven Electrical Bandgap Tuning of Atomically Thin WSe 2</title><author>Islam, Md Akibul ; Nicholson, Eric ; Barri, Nima ; Onodera, Momoko ; Starkov, Danny ; Serles, Peter ; He, Shuo ; Kumral, Boran ; Zavabeti, Ali ; Shahsa, Haleh ; Cui, Teng ; Wang, Guorui ; Machida, Tomoki ; Singh, C.V. ; Filleter, Tobin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_1002_aelm_2024002253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Islam, Md Akibul</creatorcontrib><creatorcontrib>Nicholson, Eric</creatorcontrib><creatorcontrib>Barri, Nima</creatorcontrib><creatorcontrib>Onodera, Momoko</creatorcontrib><creatorcontrib>Starkov, Danny</creatorcontrib><creatorcontrib>Serles, Peter</creatorcontrib><creatorcontrib>He, Shuo</creatorcontrib><creatorcontrib>Kumral, Boran</creatorcontrib><creatorcontrib>Zavabeti, Ali</creatorcontrib><creatorcontrib>Shahsa, Haleh</creatorcontrib><creatorcontrib>Cui, Teng</creatorcontrib><creatorcontrib>Wang, Guorui</creatorcontrib><creatorcontrib>Machida, Tomoki</creatorcontrib><creatorcontrib>Singh, C.V.</creatorcontrib><creatorcontrib>Filleter, Tobin</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Islam, Md Akibul</au><au>Nicholson, Eric</au><au>Barri, Nima</au><au>Onodera, Momoko</au><au>Starkov, Danny</au><au>Serles, Peter</au><au>He, Shuo</au><au>Kumral, Boran</au><au>Zavabeti, Ali</au><au>Shahsa, Haleh</au><au>Cui, Teng</au><au>Wang, Guorui</au><au>Machida, Tomoki</au><au>Singh, C.V.</au><au>Filleter, Tobin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain Driven Electrical Bandgap Tuning of Atomically Thin WSe 2</atitle><jtitle>Advanced electronic materials</jtitle><date>2024-11</date><risdate>2024</risdate><volume>10</volume><issue>11</issue><issn>2199-160X</issn><eissn>2199-160X</eissn><abstract>Tuning electrical properties of 2D materials through mechanical strain has predominantly focused on n‐type 2D materials like MoS 2 and WS 2 , while p‐type 2D materials such as WSe 2 remain relatively unexplored. Here, the impact of controlled mechanical strain on the electron transport characteristics of both mono and bi‐layer WSe 2 is studied. Through coupling atomic force microscopy (AFM) nanoindentation techniques and conductive AFM, the ability to finely tune the electronic band structure of WSe 2 is demonstrated. The research offers valuable mechanistic insights into understanding how WSe 2 's electronic properties respond to mechanical strain, a critical prerequisite for the development of flexible photoelectronic devices. It is also observed that under high pressure, the AFM tip/monolayer WSe 2 /metal substrate junction transitions from Schottky to Ohmic contact, attributed to significant charge injection from the substrate to the WSe 2 . These findings are significant for designing efficient metal/semiconductor contact in thin and flexible PMOS (p‐type Metal–Oxide–Semiconductor) devices.</abstract><doi>10.1002/aelm.202400225</doi><orcidid>https://orcid.org/0000-0002-4560-0515</orcidid><orcidid>https://orcid.org/0000-0003-2609-4773</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2199-160X
ispartof Advanced electronic materials, 2024-11, Vol.10 (11)
issn 2199-160X
2199-160X
language eng
recordid cdi_crossref_primary_10_1002_aelm_202400225
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete
title Strain Driven Electrical Bandgap Tuning of Atomically Thin WSe 2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T14%3A38%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20Driven%20Electrical%20Bandgap%20Tuning%20of%20Atomically%20Thin%20WSe%202&rft.jtitle=Advanced%20electronic%20materials&rft.au=Islam,%20Md%20Akibul&rft.date=2024-11&rft.volume=10&rft.issue=11&rft.issn=2199-160X&rft.eissn=2199-160X&rft_id=info:doi/10.1002/aelm.202400225&rft_dat=%3Ccrossref%3E10_1002_aelm_202400225%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true