Interfacial Superconductivity and Zero Bias Peak in Quasi‐One‐Dimensional Bi 2 Te 3 /Fe 1+y Te Heterostructure Nanostructures

Bismuth telluride/iron telluride (Bi 2 Te 3 /Fe 1+y Te) heterostructures are known to exhibit interfacial superconductivity between two non‐superconducting materials: Fe 1+y Te as the parent compound of Fe‐based superconducting materials and the topological insulator Bi 2 Te 3 . Here, a top‐down app...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced electronic materials 2023-04, Vol.9 (4)
Hauptverfasser: Cheng, Man Kit, Ng, Cheuk Yin, Ho, Sui Lun, Atanov, Omargeldi, Tai, Wai Ting, Liang, Jing, Lortz, Rolf, Sou, Iam Keong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Advanced electronic materials
container_volume 9
creator Cheng, Man Kit
Ng, Cheuk Yin
Ho, Sui Lun
Atanov, Omargeldi
Tai, Wai Ting
Liang, Jing
Lortz, Rolf
Sou, Iam Keong
description Bismuth telluride/iron telluride (Bi 2 Te 3 /Fe 1+y Te) heterostructures are known to exhibit interfacial superconductivity between two non‐superconducting materials: Fe 1+y Te as the parent compound of Fe‐based superconducting materials and the topological insulator Bi 2 Te 3 . Here, a top‐down approach is presented starting from 2D heterostructures to fabricate 1D Bi 2 Te 3 /Fe 1+y Te nanowires or narrow nanoribbons. It is demonstrated that the Bi 2 Te 3 /Fe 1+y Te heterostructure remains intact in nanostructures of widths on the order of 100 nm and the interfacial superconductivity is preserved, as evidenced by electrical transport and Andreev reflection point contact spectroscopy experiments measured at the end of the nanowire. The differential conductance shows a similar superconducting twin‐gap structure as in 2D heterostructures, but with enhanced fluctuation effects due to the lower dimensionality. A zero‐bias conductance peak indicates the presence of an Andreev bound state and, given the involvement of the topological Bi 2 Te 3 surface state, a possible topological nature of superconductivity is discussed with strong interplay with an emerging ferromagnetism due to the interstitial excess iron (Fe) in the Fe 1+y Te layer, developing in parallel with superconductivity at low temperatures.
doi_str_mv 10.1002/aelm.202200943
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aelm_202200943</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1002_aelm_202200943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c843-7606c17578cd29f10d080e37763b9c294e81e600d8af5d47c3ec893733996f293</originalsourceid><addsrcrecordid>eNpNkMFOwzAMhiMEEtPYlbPvqMNJuqY5ssHYpImB2AFxqULqSoEtnZIWaTd4A56RJ6ETCLjY_i-f7Y-xU45DjijODa03Q4FCIOpUHrCe4FonPMOHw3_zMRvE-IyIXGUyHckee5_7hkJlrDNruG-3FGzty9Y27tU1OzC-hEcKNYydiXBL5gWch7vWRPf59rH01NVLtyEfXe07wtiBgBWBhPMpAT_b7cOMuhV1bEKHbQPBjfF_KZ6wo8qsIw1-ep-tplerySxZLK_nk4tFYvNUJirDzHI1Urktha44lpgjSdX98aSt0CnlnDLEMjfVqEyVlWRzLZWUWmeV0LLPht9Y250SA1XFNriNCbuCY7FXWOwVFr8K5RfS0WZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Interfacial Superconductivity and Zero Bias Peak in Quasi‐One‐Dimensional Bi 2 Te 3 /Fe 1+y Te Heterostructure Nanostructures</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cheng, Man Kit ; Ng, Cheuk Yin ; Ho, Sui Lun ; Atanov, Omargeldi ; Tai, Wai Ting ; Liang, Jing ; Lortz, Rolf ; Sou, Iam Keong</creator><creatorcontrib>Cheng, Man Kit ; Ng, Cheuk Yin ; Ho, Sui Lun ; Atanov, Omargeldi ; Tai, Wai Ting ; Liang, Jing ; Lortz, Rolf ; Sou, Iam Keong</creatorcontrib><description>Bismuth telluride/iron telluride (Bi 2 Te 3 /Fe 1+y Te) heterostructures are known to exhibit interfacial superconductivity between two non‐superconducting materials: Fe 1+y Te as the parent compound of Fe‐based superconducting materials and the topological insulator Bi 2 Te 3 . Here, a top‐down approach is presented starting from 2D heterostructures to fabricate 1D Bi 2 Te 3 /Fe 1+y Te nanowires or narrow nanoribbons. It is demonstrated that the Bi 2 Te 3 /Fe 1+y Te heterostructure remains intact in nanostructures of widths on the order of 100 nm and the interfacial superconductivity is preserved, as evidenced by electrical transport and Andreev reflection point contact spectroscopy experiments measured at the end of the nanowire. The differential conductance shows a similar superconducting twin‐gap structure as in 2D heterostructures, but with enhanced fluctuation effects due to the lower dimensionality. A zero‐bias conductance peak indicates the presence of an Andreev bound state and, given the involvement of the topological Bi 2 Te 3 surface state, a possible topological nature of superconductivity is discussed with strong interplay with an emerging ferromagnetism due to the interstitial excess iron (Fe) in the Fe 1+y Te layer, developing in parallel with superconductivity at low temperatures.</description><identifier>ISSN: 2199-160X</identifier><identifier>EISSN: 2199-160X</identifier><identifier>DOI: 10.1002/aelm.202200943</identifier><language>eng</language><ispartof>Advanced electronic materials, 2023-04, Vol.9 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c843-7606c17578cd29f10d080e37763b9c294e81e600d8af5d47c3ec893733996f293</citedby><cites>FETCH-LOGICAL-c843-7606c17578cd29f10d080e37763b9c294e81e600d8af5d47c3ec893733996f293</cites><orcidid>0000-0002-4075-9375 ; 0000-0003-0171-2520</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Cheng, Man Kit</creatorcontrib><creatorcontrib>Ng, Cheuk Yin</creatorcontrib><creatorcontrib>Ho, Sui Lun</creatorcontrib><creatorcontrib>Atanov, Omargeldi</creatorcontrib><creatorcontrib>Tai, Wai Ting</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Lortz, Rolf</creatorcontrib><creatorcontrib>Sou, Iam Keong</creatorcontrib><title>Interfacial Superconductivity and Zero Bias Peak in Quasi‐One‐Dimensional Bi 2 Te 3 /Fe 1+y Te Heterostructure Nanostructures</title><title>Advanced electronic materials</title><description>Bismuth telluride/iron telluride (Bi 2 Te 3 /Fe 1+y Te) heterostructures are known to exhibit interfacial superconductivity between two non‐superconducting materials: Fe 1+y Te as the parent compound of Fe‐based superconducting materials and the topological insulator Bi 2 Te 3 . Here, a top‐down approach is presented starting from 2D heterostructures to fabricate 1D Bi 2 Te 3 /Fe 1+y Te nanowires or narrow nanoribbons. It is demonstrated that the Bi 2 Te 3 /Fe 1+y Te heterostructure remains intact in nanostructures of widths on the order of 100 nm and the interfacial superconductivity is preserved, as evidenced by electrical transport and Andreev reflection point contact spectroscopy experiments measured at the end of the nanowire. The differential conductance shows a similar superconducting twin‐gap structure as in 2D heterostructures, but with enhanced fluctuation effects due to the lower dimensionality. A zero‐bias conductance peak indicates the presence of an Andreev bound state and, given the involvement of the topological Bi 2 Te 3 surface state, a possible topological nature of superconductivity is discussed with strong interplay with an emerging ferromagnetism due to the interstitial excess iron (Fe) in the Fe 1+y Te layer, developing in parallel with superconductivity at low temperatures.</description><issn>2199-160X</issn><issn>2199-160X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMFOwzAMhiMEEtPYlbPvqMNJuqY5ssHYpImB2AFxqULqSoEtnZIWaTd4A56RJ6ETCLjY_i-f7Y-xU45DjijODa03Q4FCIOpUHrCe4FonPMOHw3_zMRvE-IyIXGUyHckee5_7hkJlrDNruG-3FGzty9Y27tU1OzC-hEcKNYydiXBL5gWch7vWRPf59rH01NVLtyEfXe07wtiBgBWBhPMpAT_b7cOMuhV1bEKHbQPBjfF_KZ6wo8qsIw1-ep-tplerySxZLK_nk4tFYvNUJirDzHI1Urktha44lpgjSdX98aSt0CnlnDLEMjfVqEyVlWRzLZWUWmeV0LLPht9Y250SA1XFNriNCbuCY7FXWOwVFr8K5RfS0WZc</recordid><startdate>202304</startdate><enddate>202304</enddate><creator>Cheng, Man Kit</creator><creator>Ng, Cheuk Yin</creator><creator>Ho, Sui Lun</creator><creator>Atanov, Omargeldi</creator><creator>Tai, Wai Ting</creator><creator>Liang, Jing</creator><creator>Lortz, Rolf</creator><creator>Sou, Iam Keong</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4075-9375</orcidid><orcidid>https://orcid.org/0000-0003-0171-2520</orcidid></search><sort><creationdate>202304</creationdate><title>Interfacial Superconductivity and Zero Bias Peak in Quasi‐One‐Dimensional Bi 2 Te 3 /Fe 1+y Te Heterostructure Nanostructures</title><author>Cheng, Man Kit ; Ng, Cheuk Yin ; Ho, Sui Lun ; Atanov, Omargeldi ; Tai, Wai Ting ; Liang, Jing ; Lortz, Rolf ; Sou, Iam Keong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c843-7606c17578cd29f10d080e37763b9c294e81e600d8af5d47c3ec893733996f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Man Kit</creatorcontrib><creatorcontrib>Ng, Cheuk Yin</creatorcontrib><creatorcontrib>Ho, Sui Lun</creatorcontrib><creatorcontrib>Atanov, Omargeldi</creatorcontrib><creatorcontrib>Tai, Wai Ting</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Lortz, Rolf</creatorcontrib><creatorcontrib>Sou, Iam Keong</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Man Kit</au><au>Ng, Cheuk Yin</au><au>Ho, Sui Lun</au><au>Atanov, Omargeldi</au><au>Tai, Wai Ting</au><au>Liang, Jing</au><au>Lortz, Rolf</au><au>Sou, Iam Keong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interfacial Superconductivity and Zero Bias Peak in Quasi‐One‐Dimensional Bi 2 Te 3 /Fe 1+y Te Heterostructure Nanostructures</atitle><jtitle>Advanced electronic materials</jtitle><date>2023-04</date><risdate>2023</risdate><volume>9</volume><issue>4</issue><issn>2199-160X</issn><eissn>2199-160X</eissn><abstract>Bismuth telluride/iron telluride (Bi 2 Te 3 /Fe 1+y Te) heterostructures are known to exhibit interfacial superconductivity between two non‐superconducting materials: Fe 1+y Te as the parent compound of Fe‐based superconducting materials and the topological insulator Bi 2 Te 3 . Here, a top‐down approach is presented starting from 2D heterostructures to fabricate 1D Bi 2 Te 3 /Fe 1+y Te nanowires or narrow nanoribbons. It is demonstrated that the Bi 2 Te 3 /Fe 1+y Te heterostructure remains intact in nanostructures of widths on the order of 100 nm and the interfacial superconductivity is preserved, as evidenced by electrical transport and Andreev reflection point contact spectroscopy experiments measured at the end of the nanowire. The differential conductance shows a similar superconducting twin‐gap structure as in 2D heterostructures, but with enhanced fluctuation effects due to the lower dimensionality. A zero‐bias conductance peak indicates the presence of an Andreev bound state and, given the involvement of the topological Bi 2 Te 3 surface state, a possible topological nature of superconductivity is discussed with strong interplay with an emerging ferromagnetism due to the interstitial excess iron (Fe) in the Fe 1+y Te layer, developing in parallel with superconductivity at low temperatures.</abstract><doi>10.1002/aelm.202200943</doi><orcidid>https://orcid.org/0000-0002-4075-9375</orcidid><orcidid>https://orcid.org/0000-0003-0171-2520</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2199-160X
ispartof Advanced electronic materials, 2023-04, Vol.9 (4)
issn 2199-160X
2199-160X
language eng
recordid cdi_crossref_primary_10_1002_aelm_202200943
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Wiley Online Library Journals Frontfile Complete
title Interfacial Superconductivity and Zero Bias Peak in Quasi‐One‐Dimensional Bi 2 Te 3 /Fe 1+y Te Heterostructure Nanostructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T09%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interfacial%20Superconductivity%20and%20Zero%20Bias%20Peak%20in%20Quasi%E2%80%90One%E2%80%90Dimensional%20Bi%202%20Te%203%20/Fe%201+y%20Te%20Heterostructure%20Nanostructures&rft.jtitle=Advanced%20electronic%20materials&rft.au=Cheng,%20Man%20Kit&rft.date=2023-04&rft.volume=9&rft.issue=4&rft.issn=2199-160X&rft.eissn=2199-160X&rft_id=info:doi/10.1002/aelm.202200943&rft_dat=%3Ccrossref%3E10_1002_aelm_202200943%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true