Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene

The importance of controlling both the charge carrier density and the band gap of a semiconductor cannot be overstated, as it opens the doors to a wide range of applications, including, for example, highly‐tunable transistors, photodetectors, and lasers. Bernal‐stacked bilayer graphene is a unique v...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced electronic materials 2022-11, Vol.8 (11), p.n/a
Hauptverfasser: Icking, Eike, Banszerus, Luca, Wörtche, Frederike, Volmer, Frank, Schmidt, Philipp, Steiner, Corinne, Engels, Stephan, Hesselmann, Jonas, Goldsche, Matthias, Watanabe, Kenji, Taniguchi, Takashi, Volk, Christian, Beschoten, Bernd, Stampfer, Christoph
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page
container_title Advanced electronic materials
container_volume 8
creator Icking, Eike
Banszerus, Luca
Wörtche, Frederike
Volmer, Frank
Schmidt, Philipp
Steiner, Corinne
Engels, Stephan
Hesselmann, Jonas
Goldsche, Matthias
Watanabe, Kenji
Taniguchi, Takashi
Volk, Christian
Beschoten, Bernd
Stampfer, Christoph
description The importance of controlling both the charge carrier density and the band gap of a semiconductor cannot be overstated, as it opens the doors to a wide range of applications, including, for example, highly‐tunable transistors, photodetectors, and lasers. Bernal‐stacked bilayer graphene is a unique van‐der‐Waals material that allows tuning of the band gap by an out‐of‐plane electric field. Although the first evidence of the tunable gap is already found 10 years ago, it took until recent to fabricate sufficiently clean heterostructures where the electrically induced gap can be used to fully suppress transport or confine charge carriers. Here, a detailed study of the tunable band gap in gated bilayer graphene characterized by temperature‐activated transport and finite‐bias spectroscopy measurements is presented. The latter method allows comparing different gate materials and device technologies, which directly affects the disorder potential in bilayer graphene. It is shown that graphite‐gated bilayer graphene exhibits extremely low disorder and as good as no subgap states resulting in ultraclean tunable band gaps up to 120 meV. The size of the band gaps are in good agreement with theory and allow complete current suppression making a wide range of semiconductor applications possible. The tunable band gap of bilayer graphene (BLG) is investigated using finite bias transport spectroscopy. This technique enables the study of disorder‐induced subgap states. By comparing different gating technologies, it is found that only graphite‐gated BLG devices do not suffer from subgap states, leading to ultraclean tunable band gaps of up to 120 meV and demonstrating a truly semiconducting behavior.
doi_str_mv 10.1002/aelm.202200510
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aelm_202200510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AELM202200510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2890-cb39ba9f33faa1450b508f035cff3e5039ca2206f766348e99db8d26ce68997d3</originalsourceid><addsrcrecordid>eNqFkLFOwzAQhi0EElXpyuwXSDjbTRqPbVVCUREDqcQWXZyzCHKTyC5CeXtSFQEb091w36__PsZuBcQCQN4huUMsQUqARMAFm0ihdSRSeL38s1-zWQjvACAWqZonasIeC49t6Dt_5C89maPvgun6gXeW793Ro3GELS8-Wqwc8RW2Nc-xD7xp-apxOJDnucf-jVq6YVcWXaDZ95yy_f2mWD9Eu-d8u17uIiMzDZGplK5QW6UsopgnUCWQWVCJsVZRAkobHN9I7SIdO2akdV1ltUwNpZnWi1pNWXzONWPZ4MmWvW8O6IdSQHmSUZ5klD8yRkCfgc_G0fDPdbnc7J5-2S9mOGNf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene</title><source>Access via Wiley Online Library</source><creator>Icking, Eike ; Banszerus, Luca ; Wörtche, Frederike ; Volmer, Frank ; Schmidt, Philipp ; Steiner, Corinne ; Engels, Stephan ; Hesselmann, Jonas ; Goldsche, Matthias ; Watanabe, Kenji ; Taniguchi, Takashi ; Volk, Christian ; Beschoten, Bernd ; Stampfer, Christoph</creator><creatorcontrib>Icking, Eike ; Banszerus, Luca ; Wörtche, Frederike ; Volmer, Frank ; Schmidt, Philipp ; Steiner, Corinne ; Engels, Stephan ; Hesselmann, Jonas ; Goldsche, Matthias ; Watanabe, Kenji ; Taniguchi, Takashi ; Volk, Christian ; Beschoten, Bernd ; Stampfer, Christoph</creatorcontrib><description>The importance of controlling both the charge carrier density and the band gap of a semiconductor cannot be overstated, as it opens the doors to a wide range of applications, including, for example, highly‐tunable transistors, photodetectors, and lasers. Bernal‐stacked bilayer graphene is a unique van‐der‐Waals material that allows tuning of the band gap by an out‐of‐plane electric field. Although the first evidence of the tunable gap is already found 10 years ago, it took until recent to fabricate sufficiently clean heterostructures where the electrically induced gap can be used to fully suppress transport or confine charge carriers. Here, a detailed study of the tunable band gap in gated bilayer graphene characterized by temperature‐activated transport and finite‐bias spectroscopy measurements is presented. The latter method allows comparing different gate materials and device technologies, which directly affects the disorder potential in bilayer graphene. It is shown that graphite‐gated bilayer graphene exhibits extremely low disorder and as good as no subgap states resulting in ultraclean tunable band gaps up to 120 meV. The size of the band gaps are in good agreement with theory and allow complete current suppression making a wide range of semiconductor applications possible. The tunable band gap of bilayer graphene (BLG) is investigated using finite bias transport spectroscopy. This technique enables the study of disorder‐induced subgap states. By comparing different gating technologies, it is found that only graphite‐gated BLG devices do not suffer from subgap states, leading to ultraclean tunable band gaps of up to 120 meV and demonstrating a truly semiconducting behavior.</description><identifier>ISSN: 2199-160X</identifier><identifier>EISSN: 2199-160X</identifier><identifier>DOI: 10.1002/aelm.202200510</identifier><language>eng</language><subject>band gap ; bilayer graphene ; transport spectroscopy</subject><ispartof>Advanced electronic materials, 2022-11, Vol.8 (11), p.n/a</ispartof><rights>2022 The Authors. Advanced Electronic Materials published by Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2890-cb39ba9f33faa1450b508f035cff3e5039ca2206f766348e99db8d26ce68997d3</citedby><cites>FETCH-LOGICAL-c2890-cb39ba9f33faa1450b508f035cff3e5039ca2206f766348e99db8d26ce68997d3</cites><orcidid>0000-0002-4958-7362 ; 0000-0003-3701-8119 ; 0000-0003-2359-2718 ; 0000-0003-3526-2687 ; 0000-0002-1855-1287 ; 0000-0002-6923-0854 ; 0000-0002-1467-3105</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faelm.202200510$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faelm.202200510$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Icking, Eike</creatorcontrib><creatorcontrib>Banszerus, Luca</creatorcontrib><creatorcontrib>Wörtche, Frederike</creatorcontrib><creatorcontrib>Volmer, Frank</creatorcontrib><creatorcontrib>Schmidt, Philipp</creatorcontrib><creatorcontrib>Steiner, Corinne</creatorcontrib><creatorcontrib>Engels, Stephan</creatorcontrib><creatorcontrib>Hesselmann, Jonas</creatorcontrib><creatorcontrib>Goldsche, Matthias</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Volk, Christian</creatorcontrib><creatorcontrib>Beschoten, Bernd</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><title>Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene</title><title>Advanced electronic materials</title><description>The importance of controlling both the charge carrier density and the band gap of a semiconductor cannot be overstated, as it opens the doors to a wide range of applications, including, for example, highly‐tunable transistors, photodetectors, and lasers. Bernal‐stacked bilayer graphene is a unique van‐der‐Waals material that allows tuning of the band gap by an out‐of‐plane electric field. Although the first evidence of the tunable gap is already found 10 years ago, it took until recent to fabricate sufficiently clean heterostructures where the electrically induced gap can be used to fully suppress transport or confine charge carriers. Here, a detailed study of the tunable band gap in gated bilayer graphene characterized by temperature‐activated transport and finite‐bias spectroscopy measurements is presented. The latter method allows comparing different gate materials and device technologies, which directly affects the disorder potential in bilayer graphene. It is shown that graphite‐gated bilayer graphene exhibits extremely low disorder and as good as no subgap states resulting in ultraclean tunable band gaps up to 120 meV. The size of the band gaps are in good agreement with theory and allow complete current suppression making a wide range of semiconductor applications possible. The tunable band gap of bilayer graphene (BLG) is investigated using finite bias transport spectroscopy. This technique enables the study of disorder‐induced subgap states. By comparing different gating technologies, it is found that only graphite‐gated BLG devices do not suffer from subgap states, leading to ultraclean tunable band gaps of up to 120 meV and demonstrating a truly semiconducting behavior.</description><subject>band gap</subject><subject>bilayer graphene</subject><subject>transport spectroscopy</subject><issn>2199-160X</issn><issn>2199-160X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkLFOwzAQhi0EElXpyuwXSDjbTRqPbVVCUREDqcQWXZyzCHKTyC5CeXtSFQEb091w36__PsZuBcQCQN4huUMsQUqARMAFm0ihdSRSeL38s1-zWQjvACAWqZonasIeC49t6Dt_5C89maPvgun6gXeW793Ro3GELS8-Wqwc8RW2Nc-xD7xp-apxOJDnucf-jVq6YVcWXaDZ95yy_f2mWD9Eu-d8u17uIiMzDZGplK5QW6UsopgnUCWQWVCJsVZRAkobHN9I7SIdO2akdV1ltUwNpZnWi1pNWXzONWPZ4MmWvW8O6IdSQHmSUZ5klD8yRkCfgc_G0fDPdbnc7J5-2S9mOGNf</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Icking, Eike</creator><creator>Banszerus, Luca</creator><creator>Wörtche, Frederike</creator><creator>Volmer, Frank</creator><creator>Schmidt, Philipp</creator><creator>Steiner, Corinne</creator><creator>Engels, Stephan</creator><creator>Hesselmann, Jonas</creator><creator>Goldsche, Matthias</creator><creator>Watanabe, Kenji</creator><creator>Taniguchi, Takashi</creator><creator>Volk, Christian</creator><creator>Beschoten, Bernd</creator><creator>Stampfer, Christoph</creator><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4958-7362</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-2359-2718</orcidid><orcidid>https://orcid.org/0000-0003-3526-2687</orcidid><orcidid>https://orcid.org/0000-0002-1855-1287</orcidid><orcidid>https://orcid.org/0000-0002-6923-0854</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid></search><sort><creationdate>202211</creationdate><title>Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene</title><author>Icking, Eike ; Banszerus, Luca ; Wörtche, Frederike ; Volmer, Frank ; Schmidt, Philipp ; Steiner, Corinne ; Engels, Stephan ; Hesselmann, Jonas ; Goldsche, Matthias ; Watanabe, Kenji ; Taniguchi, Takashi ; Volk, Christian ; Beschoten, Bernd ; Stampfer, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2890-cb39ba9f33faa1450b508f035cff3e5039ca2206f766348e99db8d26ce68997d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>band gap</topic><topic>bilayer graphene</topic><topic>transport spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Icking, Eike</creatorcontrib><creatorcontrib>Banszerus, Luca</creatorcontrib><creatorcontrib>Wörtche, Frederike</creatorcontrib><creatorcontrib>Volmer, Frank</creatorcontrib><creatorcontrib>Schmidt, Philipp</creatorcontrib><creatorcontrib>Steiner, Corinne</creatorcontrib><creatorcontrib>Engels, Stephan</creatorcontrib><creatorcontrib>Hesselmann, Jonas</creatorcontrib><creatorcontrib>Goldsche, Matthias</creatorcontrib><creatorcontrib>Watanabe, Kenji</creatorcontrib><creatorcontrib>Taniguchi, Takashi</creatorcontrib><creatorcontrib>Volk, Christian</creatorcontrib><creatorcontrib>Beschoten, Bernd</creatorcontrib><creatorcontrib>Stampfer, Christoph</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>CrossRef</collection><jtitle>Advanced electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Icking, Eike</au><au>Banszerus, Luca</au><au>Wörtche, Frederike</au><au>Volmer, Frank</au><au>Schmidt, Philipp</au><au>Steiner, Corinne</au><au>Engels, Stephan</au><au>Hesselmann, Jonas</au><au>Goldsche, Matthias</au><au>Watanabe, Kenji</au><au>Taniguchi, Takashi</au><au>Volk, Christian</au><au>Beschoten, Bernd</au><au>Stampfer, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene</atitle><jtitle>Advanced electronic materials</jtitle><date>2022-11</date><risdate>2022</risdate><volume>8</volume><issue>11</issue><epage>n/a</epage><issn>2199-160X</issn><eissn>2199-160X</eissn><abstract>The importance of controlling both the charge carrier density and the band gap of a semiconductor cannot be overstated, as it opens the doors to a wide range of applications, including, for example, highly‐tunable transistors, photodetectors, and lasers. Bernal‐stacked bilayer graphene is a unique van‐der‐Waals material that allows tuning of the band gap by an out‐of‐plane electric field. Although the first evidence of the tunable gap is already found 10 years ago, it took until recent to fabricate sufficiently clean heterostructures where the electrically induced gap can be used to fully suppress transport or confine charge carriers. Here, a detailed study of the tunable band gap in gated bilayer graphene characterized by temperature‐activated transport and finite‐bias spectroscopy measurements is presented. The latter method allows comparing different gate materials and device technologies, which directly affects the disorder potential in bilayer graphene. It is shown that graphite‐gated bilayer graphene exhibits extremely low disorder and as good as no subgap states resulting in ultraclean tunable band gaps up to 120 meV. The size of the band gaps are in good agreement with theory and allow complete current suppression making a wide range of semiconductor applications possible. The tunable band gap of bilayer graphene (BLG) is investigated using finite bias transport spectroscopy. This technique enables the study of disorder‐induced subgap states. By comparing different gating technologies, it is found that only graphite‐gated BLG devices do not suffer from subgap states, leading to ultraclean tunable band gaps of up to 120 meV and demonstrating a truly semiconducting behavior.</abstract><doi>10.1002/aelm.202200510</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4958-7362</orcidid><orcidid>https://orcid.org/0000-0003-3701-8119</orcidid><orcidid>https://orcid.org/0000-0003-2359-2718</orcidid><orcidid>https://orcid.org/0000-0003-3526-2687</orcidid><orcidid>https://orcid.org/0000-0002-1855-1287</orcidid><orcidid>https://orcid.org/0000-0002-6923-0854</orcidid><orcidid>https://orcid.org/0000-0002-1467-3105</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-160X
ispartof Advanced electronic materials, 2022-11, Vol.8 (11), p.n/a
issn 2199-160X
2199-160X
language eng
recordid cdi_crossref_primary_10_1002_aelm_202200510
source Access via Wiley Online Library
subjects band gap
bilayer graphene
transport spectroscopy
title Transport Spectroscopy of Ultraclean Tunable Band Gaps in Bilayer Graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A02%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20Spectroscopy%20of%20Ultraclean%20Tunable%20Band%20Gaps%20in%20Bilayer%20Graphene&rft.jtitle=Advanced%20electronic%20materials&rft.au=Icking,%20Eike&rft.date=2022-11&rft.volume=8&rft.issue=11&rft.epage=n/a&rft.issn=2199-160X&rft.eissn=2199-160X&rft_id=info:doi/10.1002/aelm.202200510&rft_dat=%3Cwiley_cross%3EAELM202200510%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true