Nucleobase Polymers Promote Low Work Function Surfaces in Organic Electronics

Low work function surfaces are crucial to electron extraction and injection in organic electronic devices. One of the challenges is developing general surface modifiers compatible with various organic semiconductors and device structures. Two novel nucleobase polymers are synthesized by reversible a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced electronic materials 2022-07, Vol.8 (7), p.n/a
Hauptverfasser: Wang, Yi, Chen, Zhihui, Yang, Rui, Kwon, Namhee, Park, Soohyung, Kim, Heung‐Sik, Lee, Hyunbok, Liu, Yao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 7
container_start_page
container_title Advanced electronic materials
container_volume 8
creator Wang, Yi
Chen, Zhihui
Yang, Rui
Kwon, Namhee
Park, Soohyung
Kim, Heung‐Sik
Lee, Hyunbok
Liu, Yao
description Low work function surfaces are crucial to electron extraction and injection in organic electronic devices. One of the challenges is developing general surface modifiers compatible with various organic semiconductors and device structures. Two novel nucleobase polymers are synthesized by reversible addition–fragmentation chain transfer polymerization. The nucleobase polymers show strong molecular dipole moments and superior film‐forming property as surface modifiers, which universally reduce work functions of common conductive electrodes. The integration of these nucleobase polymers into conventional or inverted organic solar cells (OSCs) boosts efficiencies of the devices to 17.25%, which is the highest in OSCs containing biomass‐derived interlayer materials. These nucleobase polymers are efficient and stable surface modifiers to remove energy barriers of diodes and transistors, improving electron transport between metal electrodes and organic semiconductors, which provide a new material platform for introducing biomass‐derivatives to produce low work function surfaces for high‐performance organic electronics. Nucleobase polymers with strong dipole moments universally reduce work functions of common conductive electrodes and work as efficient electrode surface modifiers in organic electronics. The combination of these nucleobase polymers with conventional or inverted organic solar cells boosts efficiencies of the devices to 17.25%, highlighting the great potential of biomass‐derived material platform for high‐performance organic electronics.
doi_str_mv 10.1002/aelm.202101316
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aelm_202101316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AELM202101316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2446-380a84e6f3e59de11f5fe0e4a289fd181530fbcc5f0b983b3370c9e15273badf3</originalsourceid><addsrcrecordid>eNqFkD1PwzAURS0EElXpyuw_kPKenS-PVdUCUkorAYItctxnFEhiZCeq-u9pVQRsTPcO99zhMHaNMEUAcaOpaacCBAJKTM_YSKBSEabwev6nX7JJCO8AgFkq40SO2OphMA25SgfiG9fsW_KBb7xrXU-8cDv-4vwHXw6d6WvX8cfBW20o8Lrja_-mu9rwRUOm9-5QwxW7sLoJNPnOMXteLp7md1Gxvr2fz4rIiDhOI5mDzmNKraREbQnRJpaAYi1yZbeYYyLBVsYkFiqVy0rKDIwiTEQmK721csymp1_jXQiebPnp61b7fYlQHn2URx_lj48DoE7Arm5o_8-6nC2K1S_7BR57ZRs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nucleobase Polymers Promote Low Work Function Surfaces in Organic Electronics</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Yi ; Chen, Zhihui ; Yang, Rui ; Kwon, Namhee ; Park, Soohyung ; Kim, Heung‐Sik ; Lee, Hyunbok ; Liu, Yao</creator><creatorcontrib>Wang, Yi ; Chen, Zhihui ; Yang, Rui ; Kwon, Namhee ; Park, Soohyung ; Kim, Heung‐Sik ; Lee, Hyunbok ; Liu, Yao</creatorcontrib><description>Low work function surfaces are crucial to electron extraction and injection in organic electronic devices. One of the challenges is developing general surface modifiers compatible with various organic semiconductors and device structures. Two novel nucleobase polymers are synthesized by reversible addition–fragmentation chain transfer polymerization. The nucleobase polymers show strong molecular dipole moments and superior film‐forming property as surface modifiers, which universally reduce work functions of common conductive electrodes. The integration of these nucleobase polymers into conventional or inverted organic solar cells (OSCs) boosts efficiencies of the devices to 17.25%, which is the highest in OSCs containing biomass‐derived interlayer materials. These nucleobase polymers are efficient and stable surface modifiers to remove energy barriers of diodes and transistors, improving electron transport between metal electrodes and organic semiconductors, which provide a new material platform for introducing biomass‐derivatives to produce low work function surfaces for high‐performance organic electronics. Nucleobase polymers with strong dipole moments universally reduce work functions of common conductive electrodes and work as efficient electrode surface modifiers in organic electronics. The combination of these nucleobase polymers with conventional or inverted organic solar cells boosts efficiencies of the devices to 17.25%, highlighting the great potential of biomass‐derived material platform for high‐performance organic electronics.</description><identifier>ISSN: 2199-160X</identifier><identifier>EISSN: 2199-160X</identifier><identifier>DOI: 10.1002/aelm.202101316</identifier><language>eng</language><subject>nucleobase polymer ; organic electronics ; organic solar cells ; surface modification ; work function</subject><ispartof>Advanced electronic materials, 2022-07, Vol.8 (7), p.n/a</ispartof><rights>2022 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2446-380a84e6f3e59de11f5fe0e4a289fd181530fbcc5f0b983b3370c9e15273badf3</cites><orcidid>0000-0001-6022-6106</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faelm.202101316$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faelm.202101316$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Zhihui</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Kwon, Namhee</creatorcontrib><creatorcontrib>Park, Soohyung</creatorcontrib><creatorcontrib>Kim, Heung‐Sik</creatorcontrib><creatorcontrib>Lee, Hyunbok</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><title>Nucleobase Polymers Promote Low Work Function Surfaces in Organic Electronics</title><title>Advanced electronic materials</title><description>Low work function surfaces are crucial to electron extraction and injection in organic electronic devices. One of the challenges is developing general surface modifiers compatible with various organic semiconductors and device structures. Two novel nucleobase polymers are synthesized by reversible addition–fragmentation chain transfer polymerization. The nucleobase polymers show strong molecular dipole moments and superior film‐forming property as surface modifiers, which universally reduce work functions of common conductive electrodes. The integration of these nucleobase polymers into conventional or inverted organic solar cells (OSCs) boosts efficiencies of the devices to 17.25%, which is the highest in OSCs containing biomass‐derived interlayer materials. These nucleobase polymers are efficient and stable surface modifiers to remove energy barriers of diodes and transistors, improving electron transport between metal electrodes and organic semiconductors, which provide a new material platform for introducing biomass‐derivatives to produce low work function surfaces for high‐performance organic electronics. Nucleobase polymers with strong dipole moments universally reduce work functions of common conductive electrodes and work as efficient electrode surface modifiers in organic electronics. The combination of these nucleobase polymers with conventional or inverted organic solar cells boosts efficiencies of the devices to 17.25%, highlighting the great potential of biomass‐derived material platform for high‐performance organic electronics.</description><subject>nucleobase polymer</subject><subject>organic electronics</subject><subject>organic solar cells</subject><subject>surface modification</subject><subject>work function</subject><issn>2199-160X</issn><issn>2199-160X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkD1PwzAURS0EElXpyuw_kPKenS-PVdUCUkorAYItctxnFEhiZCeq-u9pVQRsTPcO99zhMHaNMEUAcaOpaacCBAJKTM_YSKBSEabwev6nX7JJCO8AgFkq40SO2OphMA25SgfiG9fsW_KBb7xrXU-8cDv-4vwHXw6d6WvX8cfBW20o8Lrja_-mu9rwRUOm9-5QwxW7sLoJNPnOMXteLp7md1Gxvr2fz4rIiDhOI5mDzmNKraREbQnRJpaAYi1yZbeYYyLBVsYkFiqVy0rKDIwiTEQmK721csymp1_jXQiebPnp61b7fYlQHn2URx_lj48DoE7Arm5o_8-6nC2K1S_7BR57ZRs</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Wang, Yi</creator><creator>Chen, Zhihui</creator><creator>Yang, Rui</creator><creator>Kwon, Namhee</creator><creator>Park, Soohyung</creator><creator>Kim, Heung‐Sik</creator><creator>Lee, Hyunbok</creator><creator>Liu, Yao</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6022-6106</orcidid></search><sort><creationdate>202207</creationdate><title>Nucleobase Polymers Promote Low Work Function Surfaces in Organic Electronics</title><author>Wang, Yi ; Chen, Zhihui ; Yang, Rui ; Kwon, Namhee ; Park, Soohyung ; Kim, Heung‐Sik ; Lee, Hyunbok ; Liu, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2446-380a84e6f3e59de11f5fe0e4a289fd181530fbcc5f0b983b3370c9e15273badf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>nucleobase polymer</topic><topic>organic electronics</topic><topic>organic solar cells</topic><topic>surface modification</topic><topic>work function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Chen, Zhihui</creatorcontrib><creatorcontrib>Yang, Rui</creatorcontrib><creatorcontrib>Kwon, Namhee</creatorcontrib><creatorcontrib>Park, Soohyung</creatorcontrib><creatorcontrib>Kim, Heung‐Sik</creatorcontrib><creatorcontrib>Lee, Hyunbok</creatorcontrib><creatorcontrib>Liu, Yao</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yi</au><au>Chen, Zhihui</au><au>Yang, Rui</au><au>Kwon, Namhee</au><au>Park, Soohyung</au><au>Kim, Heung‐Sik</au><au>Lee, Hyunbok</au><au>Liu, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nucleobase Polymers Promote Low Work Function Surfaces in Organic Electronics</atitle><jtitle>Advanced electronic materials</jtitle><date>2022-07</date><risdate>2022</risdate><volume>8</volume><issue>7</issue><epage>n/a</epage><issn>2199-160X</issn><eissn>2199-160X</eissn><abstract>Low work function surfaces are crucial to electron extraction and injection in organic electronic devices. One of the challenges is developing general surface modifiers compatible with various organic semiconductors and device structures. Two novel nucleobase polymers are synthesized by reversible addition–fragmentation chain transfer polymerization. The nucleobase polymers show strong molecular dipole moments and superior film‐forming property as surface modifiers, which universally reduce work functions of common conductive electrodes. The integration of these nucleobase polymers into conventional or inverted organic solar cells (OSCs) boosts efficiencies of the devices to 17.25%, which is the highest in OSCs containing biomass‐derived interlayer materials. These nucleobase polymers are efficient and stable surface modifiers to remove energy barriers of diodes and transistors, improving electron transport between metal electrodes and organic semiconductors, which provide a new material platform for introducing biomass‐derivatives to produce low work function surfaces for high‐performance organic electronics. Nucleobase polymers with strong dipole moments universally reduce work functions of common conductive electrodes and work as efficient electrode surface modifiers in organic electronics. The combination of these nucleobase polymers with conventional or inverted organic solar cells boosts efficiencies of the devices to 17.25%, highlighting the great potential of biomass‐derived material platform for high‐performance organic electronics.</abstract><doi>10.1002/aelm.202101316</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-6022-6106</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2199-160X
ispartof Advanced electronic materials, 2022-07, Vol.8 (7), p.n/a
issn 2199-160X
2199-160X
language eng
recordid cdi_crossref_primary_10_1002_aelm_202101316
source Wiley Online Library Journals Frontfile Complete
subjects nucleobase polymer
organic electronics
organic solar cells
surface modification
work function
title Nucleobase Polymers Promote Low Work Function Surfaces in Organic Electronics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T11%3A56%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nucleobase%20Polymers%20Promote%20Low%20Work%20Function%20Surfaces%20in%20Organic%20Electronics&rft.jtitle=Advanced%20electronic%20materials&rft.au=Wang,%20Yi&rft.date=2022-07&rft.volume=8&rft.issue=7&rft.epage=n/a&rft.issn=2199-160X&rft.eissn=2199-160X&rft_id=info:doi/10.1002/aelm.202101316&rft_dat=%3Cwiley_cross%3EAELM202101316%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true