Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors

Ultrawide‐bandgap semiconductors such as AlN, BN, and diamond hold tremendous promise for high‐efficiency deep‐ultraviolet optoelectronics and high‐power/frequency electronics, but their practical application has been limited by poor current conduction. Through a combined theoretical and experimenta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced electronic materials 2020-09, Vol.6 (9), p.n/a
Hauptverfasser: Wu, Yuanpeng, Laleyan, David A., Deng, Zihao, Ahn, Chihyo, Aiello, Anthony F., Pandey, Ayush, Liu, Xianhe, Wang, Ping, Sun, Kai, Ahmadi, Elaheh, Sun, Yi, Kira, Mackillo, Bhattacharya, Pallab K., Kioupakis, Emmanouil, Mi, Zetian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 9
container_start_page
container_title Advanced electronic materials
container_volume 6
creator Wu, Yuanpeng
Laleyan, David A.
Deng, Zihao
Ahn, Chihyo
Aiello, Anthony F.
Pandey, Ayush
Liu, Xianhe
Wang, Ping
Sun, Kai
Ahmadi, Elaheh
Sun, Yi
Kira, Mackillo
Bhattacharya, Pallab K.
Kioupakis, Emmanouil
Mi, Zetian
description Ultrawide‐bandgap semiconductors such as AlN, BN, and diamond hold tremendous promise for high‐efficiency deep‐ultraviolet optoelectronics and high‐power/frequency electronics, but their practical application has been limited by poor current conduction. Through a combined theoretical and experimental study, it is shown that a critical challenge can be addressed for AlN nanostructures by using N‐rich epitaxy. Under N‐rich conditions, the p‐type Al‐substitutional Mg‐dopant formation energy is significantly reduced by 2 eV, whereas the formation energy for N‐vacancy related compensating defects is increased by ≈3 eV, both of which are essential to achieve high hole concentrations of AlN. Detailed analysis of the current−voltage characteristics of AlN p‐i‐n diodes suggests that current conduction is dominated by hole‐carrier tunneling at room temperature, which is directly related to the activation energy of Mg dopants. At high Mg concentrations, the dispersion of Mg acceptor energy levels leads to drastically reduced activation energy for a portion of Mg dopants, evidenced by the small tunneling energy of 67 meV, which explains the efficient current conduction and the very small turn‐on voltage (≈5 V) for the diodes made of nanoscale AlN. This work shows that nanostructures can overcome the dopability challenges of ultrawide‐bandgap semiconductors and significantly increase the efficiency of devices. Controlled defects formation and efficient current conduction of nanoscale AlN are realized. Under N‐rich epitaxy conditions, the formation energy for N‐vacancy related compensating defects is increased by nearly 3 eV, eliminating donor‐like compensating defects. Meanwhile, the p‐type Al‐substitutional Mg‐dopant formation energy is reduced by 2 eV, significantly enhancing Mg‐dopant incorporation and reducing hole carrier tunneling barrier.
doi_str_mv 10.1002/aelm.202000337
format Article
fullrecord <record><control><sourceid>wiley_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1002_aelm_202000337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>AELM202000337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3297-df9d198555eba37c52ec29ca11af1d3bb37313acb393db389ff17f8c94afb43f3</originalsourceid><addsrcrecordid>eNqFkM1OwkAURidGEwmydT0vUJzppZRxhxXUpOJCSNw1t_NDxkw7ZFqC7HwEn9EnEcS_navvLs65i0PIOWd9zlh8gdpV_ZjFjDGA9Ih0Yi5ExIfs6fjPfUp6TfO8Y3g6hEECHfKS-boN3jlbL-m1Nlq2dOpDha31NfWGzrD2jUSn6djNLuncbzAoOjHGSqvrlmbrED7X12otv62FawNurNLvr29XWKslruijrqw8UD40Z-TEoGt072u7ZDGdzLPbKH-4ucvGeSQhFmmkjFBcjJIk0SVCKpNYy1hI5BwNV1CWkAIHlCUIUCWMhDE8NSMpBmjKARjokv7hrwy-aYI2xSrYCsO24KzYpyv26YqfdDtBHISNdXr7D12MJ_n9r_sB54p2ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wu, Yuanpeng ; Laleyan, David A. ; Deng, Zihao ; Ahn, Chihyo ; Aiello, Anthony F. ; Pandey, Ayush ; Liu, Xianhe ; Wang, Ping ; Sun, Kai ; Ahmadi, Elaheh ; Sun, Yi ; Kira, Mackillo ; Bhattacharya, Pallab K. ; Kioupakis, Emmanouil ; Mi, Zetian</creator><creatorcontrib>Wu, Yuanpeng ; Laleyan, David A. ; Deng, Zihao ; Ahn, Chihyo ; Aiello, Anthony F. ; Pandey, Ayush ; Liu, Xianhe ; Wang, Ping ; Sun, Kai ; Ahmadi, Elaheh ; Sun, Yi ; Kira, Mackillo ; Bhattacharya, Pallab K. ; Kioupakis, Emmanouil ; Mi, Zetian</creatorcontrib><description>Ultrawide‐bandgap semiconductors such as AlN, BN, and diamond hold tremendous promise for high‐efficiency deep‐ultraviolet optoelectronics and high‐power/frequency electronics, but their practical application has been limited by poor current conduction. Through a combined theoretical and experimental study, it is shown that a critical challenge can be addressed for AlN nanostructures by using N‐rich epitaxy. Under N‐rich conditions, the p‐type Al‐substitutional Mg‐dopant formation energy is significantly reduced by 2 eV, whereas the formation energy for N‐vacancy related compensating defects is increased by ≈3 eV, both of which are essential to achieve high hole concentrations of AlN. Detailed analysis of the current−voltage characteristics of AlN p‐i‐n diodes suggests that current conduction is dominated by hole‐carrier tunneling at room temperature, which is directly related to the activation energy of Mg dopants. At high Mg concentrations, the dispersion of Mg acceptor energy levels leads to drastically reduced activation energy for a portion of Mg dopants, evidenced by the small tunneling energy of 67 meV, which explains the efficient current conduction and the very small turn‐on voltage (≈5 V) for the diodes made of nanoscale AlN. This work shows that nanostructures can overcome the dopability challenges of ultrawide‐bandgap semiconductors and significantly increase the efficiency of devices. Controlled defects formation and efficient current conduction of nanoscale AlN are realized. Under N‐rich epitaxy conditions, the formation energy for N‐vacancy related compensating defects is increased by nearly 3 eV, eliminating donor‐like compensating defects. Meanwhile, the p‐type Al‐substitutional Mg‐dopant formation energy is reduced by 2 eV, significantly enhancing Mg‐dopant incorporation and reducing hole carrier tunneling barrier.</description><identifier>ISSN: 2199-160X</identifier><identifier>EISSN: 2199-160X</identifier><identifier>DOI: 10.1002/aelm.202000337</identifier><language>eng</language><subject>aluminum nitride ; defects ; light emitting diodes ; nanostructures ; optoelectronics ; ultraviolet optoelectronics</subject><ispartof>Advanced electronic materials, 2020-09, Vol.6 (9), p.n/a</ispartof><rights>2020 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3297-df9d198555eba37c52ec29ca11af1d3bb37313acb393db389ff17f8c94afb43f3</citedby><cites>FETCH-LOGICAL-c3297-df9d198555eba37c52ec29ca11af1d3bb37313acb393db389ff17f8c94afb43f3</cites><orcidid>0000-0001-9494-7390 ; 0000-0002-3605-2887</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Faelm.202000337$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Faelm.202000337$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27922,27923,45572,45573</link.rule.ids></links><search><creatorcontrib>Wu, Yuanpeng</creatorcontrib><creatorcontrib>Laleyan, David A.</creatorcontrib><creatorcontrib>Deng, Zihao</creatorcontrib><creatorcontrib>Ahn, Chihyo</creatorcontrib><creatorcontrib>Aiello, Anthony F.</creatorcontrib><creatorcontrib>Pandey, Ayush</creatorcontrib><creatorcontrib>Liu, Xianhe</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Ahmadi, Elaheh</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Kira, Mackillo</creatorcontrib><creatorcontrib>Bhattacharya, Pallab K.</creatorcontrib><creatorcontrib>Kioupakis, Emmanouil</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><title>Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors</title><title>Advanced electronic materials</title><description>Ultrawide‐bandgap semiconductors such as AlN, BN, and diamond hold tremendous promise for high‐efficiency deep‐ultraviolet optoelectronics and high‐power/frequency electronics, but their practical application has been limited by poor current conduction. Through a combined theoretical and experimental study, it is shown that a critical challenge can be addressed for AlN nanostructures by using N‐rich epitaxy. Under N‐rich conditions, the p‐type Al‐substitutional Mg‐dopant formation energy is significantly reduced by 2 eV, whereas the formation energy for N‐vacancy related compensating defects is increased by ≈3 eV, both of which are essential to achieve high hole concentrations of AlN. Detailed analysis of the current−voltage characteristics of AlN p‐i‐n diodes suggests that current conduction is dominated by hole‐carrier tunneling at room temperature, which is directly related to the activation energy of Mg dopants. At high Mg concentrations, the dispersion of Mg acceptor energy levels leads to drastically reduced activation energy for a portion of Mg dopants, evidenced by the small tunneling energy of 67 meV, which explains the efficient current conduction and the very small turn‐on voltage (≈5 V) for the diodes made of nanoscale AlN. This work shows that nanostructures can overcome the dopability challenges of ultrawide‐bandgap semiconductors and significantly increase the efficiency of devices. Controlled defects formation and efficient current conduction of nanoscale AlN are realized. Under N‐rich epitaxy conditions, the formation energy for N‐vacancy related compensating defects is increased by nearly 3 eV, eliminating donor‐like compensating defects. Meanwhile, the p‐type Al‐substitutional Mg‐dopant formation energy is reduced by 2 eV, significantly enhancing Mg‐dopant incorporation and reducing hole carrier tunneling barrier.</description><subject>aluminum nitride</subject><subject>defects</subject><subject>light emitting diodes</subject><subject>nanostructures</subject><subject>optoelectronics</subject><subject>ultraviolet optoelectronics</subject><issn>2199-160X</issn><issn>2199-160X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwkAURidGEwmydT0vUJzppZRxhxXUpOJCSNw1t_NDxkw7ZFqC7HwEn9EnEcS_navvLs65i0PIOWd9zlh8gdpV_ZjFjDGA9Ih0Yi5ExIfs6fjPfUp6TfO8Y3g6hEECHfKS-boN3jlbL-m1Nlq2dOpDha31NfWGzrD2jUSn6djNLuncbzAoOjHGSqvrlmbrED7X12otv62FawNurNLvr29XWKslruijrqw8UD40Z-TEoGt072u7ZDGdzLPbKH-4ucvGeSQhFmmkjFBcjJIk0SVCKpNYy1hI5BwNV1CWkAIHlCUIUCWMhDE8NSMpBmjKARjokv7hrwy-aYI2xSrYCsO24KzYpyv26YqfdDtBHISNdXr7D12MJ_n9r_sB54p2ow</recordid><startdate>202009</startdate><enddate>202009</enddate><creator>Wu, Yuanpeng</creator><creator>Laleyan, David A.</creator><creator>Deng, Zihao</creator><creator>Ahn, Chihyo</creator><creator>Aiello, Anthony F.</creator><creator>Pandey, Ayush</creator><creator>Liu, Xianhe</creator><creator>Wang, Ping</creator><creator>Sun, Kai</creator><creator>Ahmadi, Elaheh</creator><creator>Sun, Yi</creator><creator>Kira, Mackillo</creator><creator>Bhattacharya, Pallab K.</creator><creator>Kioupakis, Emmanouil</creator><creator>Mi, Zetian</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9494-7390</orcidid><orcidid>https://orcid.org/0000-0002-3605-2887</orcidid></search><sort><creationdate>202009</creationdate><title>Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors</title><author>Wu, Yuanpeng ; Laleyan, David A. ; Deng, Zihao ; Ahn, Chihyo ; Aiello, Anthony F. ; Pandey, Ayush ; Liu, Xianhe ; Wang, Ping ; Sun, Kai ; Ahmadi, Elaheh ; Sun, Yi ; Kira, Mackillo ; Bhattacharya, Pallab K. ; Kioupakis, Emmanouil ; Mi, Zetian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3297-df9d198555eba37c52ec29ca11af1d3bb37313acb393db389ff17f8c94afb43f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>aluminum nitride</topic><topic>defects</topic><topic>light emitting diodes</topic><topic>nanostructures</topic><topic>optoelectronics</topic><topic>ultraviolet optoelectronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yuanpeng</creatorcontrib><creatorcontrib>Laleyan, David A.</creatorcontrib><creatorcontrib>Deng, Zihao</creatorcontrib><creatorcontrib>Ahn, Chihyo</creatorcontrib><creatorcontrib>Aiello, Anthony F.</creatorcontrib><creatorcontrib>Pandey, Ayush</creatorcontrib><creatorcontrib>Liu, Xianhe</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Sun, Kai</creatorcontrib><creatorcontrib>Ahmadi, Elaheh</creatorcontrib><creatorcontrib>Sun, Yi</creatorcontrib><creatorcontrib>Kira, Mackillo</creatorcontrib><creatorcontrib>Bhattacharya, Pallab K.</creatorcontrib><creatorcontrib>Kioupakis, Emmanouil</creatorcontrib><creatorcontrib>Mi, Zetian</creatorcontrib><collection>CrossRef</collection><jtitle>Advanced electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yuanpeng</au><au>Laleyan, David A.</au><au>Deng, Zihao</au><au>Ahn, Chihyo</au><au>Aiello, Anthony F.</au><au>Pandey, Ayush</au><au>Liu, Xianhe</au><au>Wang, Ping</au><au>Sun, Kai</au><au>Ahmadi, Elaheh</au><au>Sun, Yi</au><au>Kira, Mackillo</au><au>Bhattacharya, Pallab K.</au><au>Kioupakis, Emmanouil</au><au>Mi, Zetian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors</atitle><jtitle>Advanced electronic materials</jtitle><date>2020-09</date><risdate>2020</risdate><volume>6</volume><issue>9</issue><epage>n/a</epage><issn>2199-160X</issn><eissn>2199-160X</eissn><abstract>Ultrawide‐bandgap semiconductors such as AlN, BN, and diamond hold tremendous promise for high‐efficiency deep‐ultraviolet optoelectronics and high‐power/frequency electronics, but their practical application has been limited by poor current conduction. Through a combined theoretical and experimental study, it is shown that a critical challenge can be addressed for AlN nanostructures by using N‐rich epitaxy. Under N‐rich conditions, the p‐type Al‐substitutional Mg‐dopant formation energy is significantly reduced by 2 eV, whereas the formation energy for N‐vacancy related compensating defects is increased by ≈3 eV, both of which are essential to achieve high hole concentrations of AlN. Detailed analysis of the current−voltage characteristics of AlN p‐i‐n diodes suggests that current conduction is dominated by hole‐carrier tunneling at room temperature, which is directly related to the activation energy of Mg dopants. At high Mg concentrations, the dispersion of Mg acceptor energy levels leads to drastically reduced activation energy for a portion of Mg dopants, evidenced by the small tunneling energy of 67 meV, which explains the efficient current conduction and the very small turn‐on voltage (≈5 V) for the diodes made of nanoscale AlN. This work shows that nanostructures can overcome the dopability challenges of ultrawide‐bandgap semiconductors and significantly increase the efficiency of devices. Controlled defects formation and efficient current conduction of nanoscale AlN are realized. Under N‐rich epitaxy conditions, the formation energy for N‐vacancy related compensating defects is increased by nearly 3 eV, eliminating donor‐like compensating defects. Meanwhile, the p‐type Al‐substitutional Mg‐dopant formation energy is reduced by 2 eV, significantly enhancing Mg‐dopant incorporation and reducing hole carrier tunneling barrier.</abstract><doi>10.1002/aelm.202000337</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-9494-7390</orcidid><orcidid>https://orcid.org/0000-0002-3605-2887</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2199-160X
ispartof Advanced electronic materials, 2020-09, Vol.6 (9), p.n/a
issn 2199-160X
2199-160X
language eng
recordid cdi_crossref_primary_10_1002_aelm_202000337
source Wiley Online Library Journals Frontfile Complete
subjects aluminum nitride
defects
light emitting diodes
nanostructures
optoelectronics
ultraviolet optoelectronics
title Controlling Defect Formation of Nanoscale AlN: Toward Efficient Current Conduction of Ultrawide‐Bandgap Semiconductors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A16%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20Defect%20Formation%20of%20Nanoscale%20AlN:%20Toward%20Efficient%20Current%20Conduction%20of%20Ultrawide%E2%80%90Bandgap%20Semiconductors&rft.jtitle=Advanced%20electronic%20materials&rft.au=Wu,%20Yuanpeng&rft.date=2020-09&rft.volume=6&rft.issue=9&rft.epage=n/a&rft.issn=2199-160X&rft.eissn=2199-160X&rft_id=info:doi/10.1002/aelm.202000337&rft_dat=%3Cwiley_cross%3EAELM202000337%3C/wiley_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true